172 research outputs found
Geometrical approach to mutually unbiased bases
We propose a unifying phase-space approach to the construction of mutually
unbiased bases for a two-qubit system. It is based on an explicit
classification of the geometrical structures compatible with the notion of
unbiasedness. These consist of bundles of discrete curves intersecting only at
the origin and satisfying certain additional properties. We also consider the
feasible transformations between different kinds of curves and show that they
correspond to local rotations around the Bloch-sphere principal axes. We
suggest how to generalize the method to systems in dimensions that are powers
of a prime.Comment: 10 pages. Some typos in the journal version have been correcte
Graph states in phase space
The phase space for a system of qubits is a discrete grid of points, whose axes are labeled in terms of the elements of the
finite field \Gal{2^n} to endow it with proper geometrical properties. We
analyze the representation of graph states in that phase space, showing that
these states can be identified with a class of non-singular curves. We provide
an algebraic representation of the most relevant quantum operations acting on
these states and discuss the advantages of this approach.Comment: 14 pages. 2 figures. Published in Journal of Physics
Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case
Let be a prime number, for some positive integer , be a
positive integer such that , and let \k be a primitive
multiplicative character of order over finite field \fq. This paper
studies the problem of explicit evaluation of Gauss sums in "\textsl{index 2
case}" (i.e. f=\f{\p(N)}{2}=[\zn:\pp], where \p(\cd) is Euler function).
Firstly, the classification of the Gauss sums in index 2 case is presented.
Then, the explicit evaluation of Gauss sums G(\k^\la) (1\laN-1) in index 2
case with order being general even integer (i.e. N=2^{r}\cd N_0 where
are positive integers and is odd.) is obtained. Thus, the
problem of explicit evaluation of Gauss sums in index 2 case is completely
solved
A note on the sign (unit root) ambiguities of Gauss sums in index 2 and 4 cases
Recently, the explicit evaluation of Gauss sums in the index 2 and 4 cases
have been given in several papers (see [2,3,7,8]). In the course of evaluation,
the sigh (or unit root) ambiguities are unavoidably occurred. This paper
presents another method, different from [7] and [8], to determine the sigh
(unit root) ambiguities of Gauss sums in the index 2 case, as well as the ones
with odd order in the non-cyclic index 4 case. And we note that the method in
this paper are more succinct and effective than [8] and [7]
On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity
It is shown that the continuous q-Hermite polynomials for q a root of unity
have simple transformation properties with respect to the classical Fourier
transform. This result is then used to construct q-extended eigenvectors of the
finite Fourier transform in terms of these polynomials.Comment: 12 pages, thoroughly rewritten, the q-extended eigenvectors now
N-periodic with q an M-th root of
Qudit surface codes and gauge theory with finite cyclic groups
Surface codes describe quantum memory stored as a global property of
interacting spins on a surface. The state space is fixed by a complete set of
quasi-local stabilizer operators and the code dimension depends on the first
homology group of the surface complex. These code states can be actively
stabilized by measurements or, alternatively, can be prepared by cooling to the
ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2
(qubit) lattices, such ground states have been proposed as topologically
protected memory for qubits. We extend these constructions to lattices or more
generally cell complexes with qudits, either of prime level or of level
for prime and , and therefore under tensor
decomposition, to arbitrary finite levels. The Hamiltonian describes an exact
gauge theory whose excitations
correspond to abelian anyons. We provide protocols for qudit storage and
retrieval and propose an interferometric verification of topological order by
measuring quasi-particle statistics.Comment: 26 pages, 5 figure
Holomorphic Quantization on the Torus and Finite Quantum Mechanics
We construct explicitly the quantization of classical linear maps of on toroidal phase space, of arbitrary modulus, using the holomorphic
(chiral) version of the metaplectic representation. We show that Finite Quantum
Mechanics (FQM) on tori of arbitrary integer discretization, is a consistent
restriction of the holomorphic quantization of to the subgroup
, being the principal congruent subgroup mod l,
on a finite dimensional Hilbert space. The generators of the ``rotation group''
mod l, , for arbitrary values of l are determined as
well as their quantum mechanical eigenvalues and eigenstates.Comment: 12 pages LaTeX (needs amssymb.sty). Version as will appear in J.
Phys.
Discrete coherent and squeezed states of many-qudit systems
We consider the phase space for a system of identical qudits (each one of
dimension , with a primer number) as a grid of
points and use the finite field to label the corresponding axes.
The associated displacement operators permit to define -parametrized
quasidistribution functions in this grid, with properties analogous to their
continuous counterparts. These displacements allow also for the construction of
finite coherent states, once a fiducial state is fixed. We take this reference
as one eigenstate of the discrete Fourier transform and study the factorization
properties of the resulting coherent states. We extend these ideas to include
discrete squeezed states, and show their intriguing relation with entangled
states between different qudits.Comment: 11 pages, 3 eps figures. Submitted for publicatio
Multicomplementary operators via finite Fourier transform
A complete set of d+1 mutually unbiased bases exists in a Hilbert spaces of
dimension d, whenever d is a power of a prime. We discuss a simple construction
of d+1 disjoint classes (each one having d-1 commuting operators) such that the
corresponding eigenstates form sets of unbiased bases. Such a construction
works properly for prime dimension. We investigate an alternative construction
in which the real numbers that label the classes are replaced by a finite field
having d elements. One of these classes is diagonal, and can be mapped to
cyclic operators by means of the finite Fourier transform, which allows one to
understand complementarity in a similar way as for the position-momentum pair
in standard quantum mechanics. The relevant examples of two and three qubits
and two qutrits are discussed in detail.Comment: 15 pages, no figure
Wigner Functions and Separability for Finite Systems
A discussion of discrete Wigner functions in phase space related to mutually
unbiased bases is presented. This approach requires mathematical assumptions
which limits it to systems with density matrices defined on complex Hilbert
spaces of dimension p^n where p is a prime number. With this limitation it is
possible to define a phase space and Wigner functions in close analogy to the
continuous case. That is, we use a phase space that is a direct sum of n
two-dimensional vector spaces each containing p^2 points. This is in contrast
to the more usual choice of a two-dimensional phase space containing p^(2n)
points. A useful aspect of this approach is that we can relate complete
separability of density matrices and their Wigner functions in a natural way.
We discuss this in detail for bipartite systems and present the generalization
to arbitrary numbers of subsystems when p is odd. Special attention is required
for two qubits (p=2) and our technique fails to establish the separability
property for more than two qubits.Comment: Some misprints have been corrected and a proof of the separability of
the A matrices has been adde
- …
