172 research outputs found

    Geometrical approach to mutually unbiased bases

    Full text link
    We propose a unifying phase-space approach to the construction of mutually unbiased bases for a two-qubit system. It is based on an explicit classification of the geometrical structures compatible with the notion of unbiasedness. These consist of bundles of discrete curves intersecting only at the origin and satisfying certain additional properties. We also consider the feasible transformations between different kinds of curves and show that they correspond to local rotations around the Bloch-sphere principal axes. We suggest how to generalize the method to systems in dimensions that are powers of a prime.Comment: 10 pages. Some typos in the journal version have been correcte

    Graph states in phase space

    Full text link
    The phase space for a system of nn qubits is a discrete grid of 2n×2n2^{n} \times 2^{n} points, whose axes are labeled in terms of the elements of the finite field \Gal{2^n} to endow it with proper geometrical properties. We analyze the representation of graph states in that phase space, showing that these states can be identified with a class of non-singular curves. We provide an algebraic representation of the most relevant quantum operations acting on these states and discuss the advantages of this approach.Comment: 14 pages. 2 figures. Published in Journal of Physics

    Complete Solving for Explicit Evaluation of Gauss Sums in the Index 2 Case

    Full text link
    Let pp be a prime number, q=pfq=p^f for some positive integer ff, NN be a positive integer such that gcd(N,p)=1\gcd(N,p)=1, and let \k be a primitive multiplicative character of order NN over finite field \fq. This paper studies the problem of explicit evaluation of Gauss sums in "\textsl{index 2 case}" (i.e. f=\f{\p(N)}{2}=[\zn:\pp], where \p(\cd) is Euler function). Firstly, the classification of the Gauss sums in index 2 case is presented. Then, the explicit evaluation of Gauss sums G(\k^\la) (1\laN-1) in index 2 case with order NN being general even integer (i.e. N=2^{r}\cd N_0 where r,N0r,N_0 are positive integers and N03N_03 is odd.) is obtained. Thus, the problem of explicit evaluation of Gauss sums in index 2 case is completely solved

    A note on the sign (unit root) ambiguities of Gauss sums in index 2 and 4 cases

    Full text link
    Recently, the explicit evaluation of Gauss sums in the index 2 and 4 cases have been given in several papers (see [2,3,7,8]). In the course of evaluation, the sigh (or unit root) ambiguities are unavoidably occurred. This paper presents another method, different from [7] and [8], to determine the sigh (unit root) ambiguities of Gauss sums in the index 2 case, as well as the ones with odd order in the non-cyclic index 4 case. And we note that the method in this paper are more succinct and effective than [8] and [7]

    On a q-extension of Mehta's eigenvectors of the finite Fourier transform for q a root of unity

    Get PDF
    It is shown that the continuous q-Hermite polynomials for q a root of unity have simple transformation properties with respect to the classical Fourier transform. This result is then used to construct q-extended eigenvectors of the finite Fourier transform in terms of these polynomials.Comment: 12 pages, thoroughly rewritten, the q-extended eigenvectors now N-periodic with q an M-th root of

    Qudit surface codes and gauge theory with finite cyclic groups

    Get PDF
    Surface codes describe quantum memory stored as a global property of interacting spins on a surface. The state space is fixed by a complete set of quasi-local stabilizer operators and the code dimension depends on the first homology group of the surface complex. These code states can be actively stabilized by measurements or, alternatively, can be prepared by cooling to the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2 (qubit) lattices, such ground states have been proposed as topologically protected memory for qubits. We extend these constructions to lattices or more generally cell complexes with qudits, either of prime level or of level dd^\ell for dd prime and 0\ell \geq 0, and therefore under tensor decomposition, to arbitrary finite levels. The Hamiltonian describes an exact ZdZ/dZ\mathbb{Z}_d\cong\mathbb{Z}/d\mathbb{Z} gauge theory whose excitations correspond to abelian anyons. We provide protocols for qudit storage and retrieval and propose an interferometric verification of topological order by measuring quasi-particle statistics.Comment: 26 pages, 5 figure

    Holomorphic Quantization on the Torus and Finite Quantum Mechanics

    Get PDF
    We construct explicitly the quantization of classical linear maps of SL(2,R)SL(2, R) on toroidal phase space, of arbitrary modulus, using the holomorphic (chiral) version of the metaplectic representation. We show that Finite Quantum Mechanics (FQM) on tori of arbitrary integer discretization, is a consistent restriction of the holomorphic quantization of SL(2,Z)SL(2, Z) to the subgroup SL(2,Z)/ΓlSL(2, Z)/\Gamma_l, Γl\Gamma_l being the principal congruent subgroup mod l, on a finite dimensional Hilbert space. The generators of the ``rotation group'' mod l, Ol(2)SL(2,l)O_{l}(2)\subset SL(2,l), for arbitrary values of l are determined as well as their quantum mechanical eigenvalues and eigenstates.Comment: 12 pages LaTeX (needs amssymb.sty). Version as will appear in J. Phys.

    Discrete coherent and squeezed states of many-qudit systems

    Full text link
    We consider the phase space for a system of nn identical qudits (each one of dimension dd, with dd a primer number) as a grid of dn×dnd^{n} \times d^{n} points and use the finite field GF(dn)GF(d^{n}) to label the corresponding axes. The associated displacement operators permit to define ss-parametrized quasidistribution functions in this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states between different qudits.Comment: 11 pages, 3 eps figures. Submitted for publicatio

    Multicomplementary operators via finite Fourier transform

    Full text link
    A complete set of d+1 mutually unbiased bases exists in a Hilbert spaces of dimension d, whenever d is a power of a prime. We discuss a simple construction of d+1 disjoint classes (each one having d-1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail.Comment: 15 pages, no figure

    Wigner Functions and Separability for Finite Systems

    Full text link
    A discussion of discrete Wigner functions in phase space related to mutually unbiased bases is presented. This approach requires mathematical assumptions which limits it to systems with density matrices defined on complex Hilbert spaces of dimension p^n where p is a prime number. With this limitation it is possible to define a phase space and Wigner functions in close analogy to the continuous case. That is, we use a phase space that is a direct sum of n two-dimensional vector spaces each containing p^2 points. This is in contrast to the more usual choice of a two-dimensional phase space containing p^(2n) points. A useful aspect of this approach is that we can relate complete separability of density matrices and their Wigner functions in a natural way. We discuss this in detail for bipartite systems and present the generalization to arbitrary numbers of subsystems when p is odd. Special attention is required for two qubits (p=2) and our technique fails to establish the separability property for more than two qubits.Comment: Some misprints have been corrected and a proof of the separability of the A matrices has been adde
    corecore