79 research outputs found
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases
Background: The secondary structure and complexity of mRNA influences its
accessibility to regulatory molecules (proteins, micro-RNAs), its stability and
its level of expression. The mobile elements of the RNA sequence, the wobble
bases, are expected to regulate the formation of structures encompassing coding
sequences.
Results: The sequence/folding energy (FE) relationship was studied by
statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found
that the FE (dG) associated with coding sequences is significant and negative
(407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able
to form structures. However, the FE has only a small free component, less than
10% of the total. The contribution of the 1st and 3rd codon bases to the FE is
larger than the contribution of the 2nd (central) bases. It is possible to
achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous
codons. The sequence/FE relationship can be described with a simple algorithm,
and the total FE can be predicted solely from the sequence composition of the
nucleic acid. The contributions of different synonymous codons to the FE are
additive and one codon cannot replace another. The accumulated contributions of
synonymous codons of an amino acid to the total folding energy of an mRNA is
strongly correlated to the relative amount of that amino acid in the translated
protein.
Conclusion: Synonymous codons are not interchangable with regard to their
role in determining the mRNA FE and the relative amounts of amino acids in the
translated protein, even if they are indistinguishable in respect of amino acid
coding.Comment: 14 pages including 6 figures and 1 tabl
Expression and function of human hemokinin-1 in human and guinea pig airways
<p>Abstract</p> <p>Background</p> <p>Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the <it>TAC4 </it>gene. <it>TAC4 </it>and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study.</p> <p>Methods</p> <p>RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages.</p> <p>Results</p> <p>In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK<sub>1</sub>-and NK<sub>2</sub>-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK<sub>2</sub>-receptors, which blockade unmasked a NK<sub>1</sub>-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK<sub>1</sub>-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages.</p> <p>Conclusions</p> <p>We demonstrate endogenous expression of <it>TAC4 </it>in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.</p
Decision making as a predictor of first ecstasy use: a prospective study
Ecstasy (+/- 3,4-methylenedioxymethamphetamine) is a widely used recreational drug that may damage the serotonin system and may entail neuropsychological dysfunctions. Few studies investigated predictors for ecstasy use. Self-reported impulsivity does not predict the initiation of ecstasy use; the question is if neuropsychological indicators of impulsivity can predict first ecstasy use. This study tested the hypothesis that a neuropsychological indicator of impulsivity predicts initiation of ecstasy use. Decision-making strategy and decision-making reaction times were examined with the Iowa Gambling Task in 149 ecstasy-naive subjects. The performance of 59 subjects who initiated ecstasy use during a mean follow-up period of 18 months (range, 11-26) was compared with the performance of 90 subjects that remained ecstasy-naive. Significant differences in decision-making strategy between female future ecstasy users and female persistent ecstasy-naive subjects were found. In addition, the gap between decision-making reaction time after advantageous choices and reaction time after disadvantageous choices was smaller in future ecstasy users than in persistent ecstasy-naives. Decision-making strategy on a gambling task was predictive for future use of ecstasy in female subjects. Differences in decision-making time between future ecstasy users and persistent ecstasy-naives may point to lower punishment sensitivity or higher impulsivity in future ecstasy users. Because differences were small, the clinical relevance is questionabl
Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae
BACKGROUND: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. RESULTS: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. CONCLUSION: The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes) are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research
Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression
A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects
- …
