15 research outputs found
A new microdialysis probe for continuous lactate measurement during fetal monitoring:Proof of concept in an animal model
Introduction Cardiotocography (CTG) is currently the most commonly used method for intrapartum fetal monitoring during labor. However, a high false-positive rate of fetal acidosis indicated by CTG leads to an increase in obstetric interventions. We developed a microdialysis probe that is integrated into a fetal scalp electrode allowing continuous measurement of lactate subcutaneously, thus giving instant information about the oxygenation status of the fetus. Our aim was to establish proof of concept in an animal model using a microdialysis probe to monitor lactate subcutaneously. Material and methods We performed an in vivo study in adult male wild-type Wistar rats. We modified electrodes used for CTG monitoring in human fetuses to incorporate a microdialysis membrane. Optimum flow rates for microdialysis were determined in vitro. For the in vivo experiment, a microdialysis probe was inserted into the skin on the back of the animal. De-oxygenation and acidosis were induced by lowering the inspiratory oxygen pressure. Oxygenation and heart rate were monitored. A jugular vein cannula was inserted to draw blood samples for analysis of lactate, pH, pco(2), and saturation. Lactate levels in dialysate were compared with plasma lactate levels. Results Baseline blood lactate levels were around 1 mmol/L. Upon de-oxygenation, oxygen saturation fell to below 40% for 1 h and blood lactate levels increased 2.5-fold. Correlation of dialysate lactate levels with plasma lactate levels was 0.89 resulting in an R-2 of .78 in the corresponding linear regression. Conclusions In this animal model, lactate levels in subcutaneous fluid collected by microdialysis closely reflected blood lactate levels upon transient de-oxygenation, indicating that our device is suitable for subcutaneous measurement of lactate. Microdialysis probe technology allows the measurement of multiple compounds in the dialysate, such as glucose, albumin, or inflammatory mediators, so this technique may offer the unique possibility to shed light on fetal physiology during the intrapartum period
Extracellular levels of ATP and acetylcholine during lithium-pilocarpine induced status epilepticus in rats
Flow Visualization Study on the Effect of a Gurney Flap in a Low Reynolds Number Compressor Cascade
The effect of a Gurney flap in a compressor cascade model at low Reynolds number was investigated using tuft flow visualization in a water table facility. Although small in scale, water tables have the advantage of low cost and the ease with which test conditions can be varied. In this experiment, tuft flow visualization was used to determine the outgoing flow angle for a NACA 65-(12)10 compressor cascade model with a solidity of 1.5 at a blade chord Reynolds number of 16,000. The baseline (no flap) results were found to be in good agreement compared to results in the literature for tests conducted at Reynolds number in the 250,000+ range. A second set of measurements were then taken for a Gurney flap with a height of 2% of the chord length attached to the trailing edge of the cascade blades. The results suggest that the Gurney flap energizes the flow and delays the stall at large incoming flow angles
