53 research outputs found
A Linear Framework for Time-Scale Separation in Nonlinear Biochemical Systems
Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level
Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021
This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020-December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021
This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020–December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
Vloga kulturnega kapitala pri dostopu do visokosolske izobrazbe in institucionalne izbire
This paper aims to explore social inequalities in school achievement and educational decision-making of the final-year students of secondary schools in the City of Zagreb and Zagreb County, Croatia (N = 534). The theoretical framework of the paper was Bourdieu\u27s theory of cultural and social reproduction (1977a). The main objectives were an analysis of the association between the students\u27 cultural capital and their school achievement and analyses of the predictive power of the cultural capital theory in the context of educational decisions in the transition to tertiary education. In the analysis of school achievement, sequential multiple regression analysis was used, while in the analyses of educational decisions logistic regression analyses were performed (binary and multinomial logistic regression). The results indicated that cultural capital had statistically significant correlation with school performance. Among the cultural capital indicators, statistically significant predictors of the probability of the intention to enroll. into vocational higher education were the material dimension of cultural capital and naturalness of higher education aspirations of students. For the prediction of the probability of intention to enroll in university, significant predictors were embodied cultural capital, the naturalness of higher education aspirations of students, and father\u27s educational level. The study results on a selected sample of graduates tend to support Bourdieu\u27s theory of cultural reproduction through education. (DIPF/Orig.
PR-39, a porcine host defence peptide, is prominent in mucosa and lymphatic tissue of the respiratory tract in healthy pigs and pigs infected with actinobacillus pleuropneumoniae
Background: Host defence peptides are important components of mammalian innate immunity. We have previously shown that PR-39, a cathelicidin host defence peptide, is an important factor in porcine innate immune mechanisms as a first line of defence after infection with Actinobacillus pleuropneumoniae. PR-39 interacts with bacterial and mammalian cells and is involved in a variety of processes such as killing of bacteria and promotion of wound repair. In bronchoalveolar lavage fluid of infected pigs PR-39 concentrations are elevated during the chronic but not during the acute stage of infection when polymorphonuclear neutrophils (known as the major source of PR-39) are highly increased. Thus it was assumed, that the real impact of PR-39 during infection might not be reflected by its concentration in bronchoalveolar lavage fluid.
Results: Using immunohistochemistry this study demonstrates the actual distribution of PR-39 in tissue of the upper and lower respiratory tract of healthy pigs, and of pigs during the acute and chronic stage of experimental infection with Actinobacillus pleuropneumoniae. During the acute stage of infection PR-39 accumulated adjacent to blood vessels and within bronchi. Immune reactions were mainly localized in the cytoplasm of cells with morphological characteristics of polymorphonuclear neutrophils as well as in extracellular fluids. During the chronic stage of infection pigs lacked clinical signs and lung alterations were characterized by reparation and remodelling processes such as tissue sequestration and fibroblastic pleuritis with a high-grade accumulation of small PR-39-positive cells resembling polymorphonuclear neutrophils. In healthy pigs, PR-39 was homogenously expressed in large single cells within the alveoli resembling alveolar macrophages or type 2 pneumocytes. PR-39 was found in all tissue samples of the upper respiratory tract in healthy and diseased pigs. Within the tracheobronchial lymph nodes, PR-39 dominated in the cytoplasm and nuclei of large cells resembling antigen-presenting cells located in the periphery of secondary follicles.
Conclusions: These immunohistochemical findings indicate that, in addition to polymorphonuclear neutrophils, other cells are involved in the expression, storage, or uptake of PR-39. The presence of PR-39 in healthy lung tissue showed that this antibacterial peptide might be important for the maintenance of health
Nationalism in Today's Antarctic
Whilst nationalism is a recognised force globally, its framing is predicated on experience in conventionally occupied parts of the world. The familiar image of angry young men waving Kalashnikovs means that the idea that nationalism might be at play in Antarctica has to overcome much instinctive resistance, as well as the tactical opposition of the keepers of the present Antarctic political arrangements. The limited consideration of nationalism in Antarctica has generally been confined to the past, particularly Heroic-Era‚ÄövÑvp and 1930s‚Äö-1940s expeditions. This article addresses the formations of nationalism in the Antarctic present. Antarctic nationalism need not present in the same shape as nationalisms elsewhere to justify being called nationalism. Here it occurs in a virtual or mediated form, remote from the conventional metropolitan territories of the states and interests concerned. The key aspect of Antarctic nationalism is its contemporary form and intensity. We argue that given the historic difficulties of Antarctic activities, and the geopolitical constraints of the Cold War, it has only been since the end of that Cold War that a more muscular nationalism has been able to flourish in Antarctica. Our assessment is that there at least 11 bases upon which Antarctic nationalism might arise: (i) formally declared claims to territorial sovereignty in Antarctica; (ii) relative proximity of Antarctica to one's metropolitan territory; (iii) historic and institutional associations with Antarctica; (iv) social and cultural associations; (v) regional or global hegemonic inclinations; (vi) alleged need in relation to resources; (vii) contested uses or practices in Antarctica; (viii) carry-over from intense antipathies outside Antarctica; (ix) national pride in, and mobilisation through, national Antarctic programmes; (x) infrastructure and logistics arrangements; or (xi) denial or constraint of access by one's strategic competitors or opponents. In practice of course, these are likely to be manifested in combination. The risks inherent in Antarctic nationalism are the risks inherent in unrestrained nationalism anywhere, compounded by its already weak juridical situation. In Antarctica, the intersection of nationalism with resources poses a particular challenge to the regional order and its commitments to shareable public goods such as scientific research and environmental protection
- …
