8,249 research outputs found

    Many-Body effects and resonances in universal quantum sticking of cold atoms to surfaces

    Full text link
    The role of shape resonances and many-body effects on universal quantum sticking of ultra cold atoms onto solid surfaces is examined analytically and computationally using an exactly solvable representation of the Dyson equation. We derive the self-energy renormalization of the the transition amplitude between an ultra cold scattering atom and the bound states on the surface in order to elucidate the role of virtual phonon exchanges in the limiting behavior of the sticking probability. We demonstrate that, to first order in the interactions for finite ranged atom-surface potentials, virtual phonons can only rescale the strength of the atom-surface coupling and do not rescale the range of the coupling. Thus, universal sticking behaviour at ultra-low energies is to be expected for all finite ranged potentials. We demonstrate that the onset of the universal sticking behavior depends greatly on the position of the shape resonance of the renormalized potential and for sufficiently low energy shape resonances, deviations from the universal s(E)Es(E)\propto\sqrt{E} can occur near these energies. We believe that this accounts for many of the low energy sticking trends observed in the scattering of sub-millikelvin H atoms from superfluid 4^4He films.Comment: To appear in 08-Feb-95 issue of The Journal of Chemical Physic

    Error estimates for interpolation of rough data using the scattered shifts of a radial basis function

    Full text link
    The error between appropriately smooth functions and their radial basis function interpolants, as the interpolation points fill out a bounded domain in R^d, is a well studied artifact. In all of these cases, the analysis takes place in a natural function space dictated by the choice of radial basis function -- the native space. The native space contains functions possessing a certain amount of smoothness. This paper establishes error estimates when the function being interpolated is conspicuously rough.Comment: 12 page

    Interpreting and Implementing the Long Term Athlete Development Model: English Swimming Coaches’ Views on the (Swimming) LTAD in Practice

    Get PDF
    The LTAD (Long Term Athlete Development) model has come to represent a sports-wide set of principles that significantly influences national sports policy in England. However, little is known about its impact ‘on the ground.’ This study is concerned with how national sporting bodies have adapted the model to their specific requirements and how local interpretation and implementation of this is operationalized and delivered. Interpretation and implementation of the LTAD model used in English swimming was investigated through interviews with six elite and five non-elite swimming coaches in the north of England. While there were concerns with aspects of the Amateur Swimming Association (ASA) regulations governing competition for age-group swimmers, the major concern expressed by participants was with over-emphasizing volumes of training, leading to the neglect of technique

    Learning masculinities in a Japanese high school rugby club

    Get PDF
    This paper draws on research conducted on a Tokyo high school rugby club to explore diversity in the masculinities formed through membership in the club. Based on the premise that particular forms of masculinity are expressed and learnt through ways of playing (game style) and the attendant regimes of training, it examines the expression and learning of masculinities at three analytic levels. It identifies a hegemonic, culture-specific form of masculinity operating in Japanese high school rugby, a class-influenced variation of it at the institutional level of the school and, by further tightening its analytic focus, further variation at an individual level. In doing so this paper highlights the ways in which diversity in the masculinities constructed through contact sports can be obfuscated by a reductionist view of there being only one, universal hegemonic patterns of masculinity

    CubeSat Measures World's First Ice Cloud Map to Support Climate Research

    Get PDF
    Virginia Diodes, Inc. received NASA SBIR Awards to fund research and development for a lesser developed region of the electromagnetic spectrumterahertz waves. Their work led to funding from NASA ESTO, and the resulting CubeSat (named IceCube) captured the worlds first ice cloud map, which will contribute to our understanding of Earths climat

    Suppression of Quantum Scattering in Strongly Confined Systems

    Get PDF
    We demonstrate that scattering of particles strongly interacting in three dimensions (3D) can be suppressed at low energies in a quasi-one-dimensional (1D) confinement. The underlying mechanism is the interference of the s- and p-wave scattering contributions with large s- and p-wave 3D scattering lengths being a necessary prerequisite. This low-dimensional quantum scattering effect might be useful in "interacting" quasi-1D ultracold atomic gases, guided atom interferometry, and impurity scattering in strongly confined quantum wire-based electronic devices.Comment: 3 figs, Phys. Rev. Lett. (early November issue

    Magnetothermodynamics: Measuring equations of state in a relaxed magnetohydrodynamic plasma

    Get PDF
    We report the first measurements of equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.Comment: 4 pages, 4 figure

    Measuring The Equations Of State In A Relaxed Magnetohydrodynamic Plasma

    Get PDF
    We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data
    corecore