1,779 research outputs found
Status of the joint LIGO--TAMA300 inspiral analysis
We present the status of the joint search for gravitational waves from
inspiraling neutron star binaries in the LIGO Science Run 2 and TAMA300 Data
Taking Run 8 data, which was taken from February 14 to April 14, 2003, by the
LIGO and TAMA collaborations. In this paper we discuss what has been learned
from an analysis of a subset of the data sample reserved as a ``playground''.
We determine the coincidence conditions for parameters such as the coalescence
time and chirp mass by injecting simulated Galactic binary neutron star signals
into the data stream. We select coincidence conditions so as to maximize our
efficiency of detecting simulated signals. We obtain an efficiency for our
coincident search of 78 %, and show that we are missing primarily very distant
signals for TAMA300. We perform a time slide analysis to estimate the
background due to accidental coincidence of noise triggers. We find that the
background triggers have a very different character from the triggers of
simulated signals.Comment: 10 page, 8 figures, accepted for publication in Classical and Quantum
Gravity for the special issue of the GWDAW9 Proceedings ; Corrected typos,
minor change
Recent results on the search for continuous sources with LIGO and GEO600
An overview of the searches for continuous gravitational wave signals in LIGO
and GEO 600 performed on different recent science runs and results are
presented. This includes both searching for gravitational waves from known
pulsars as well as blind searches over a wide parameter space.Comment: TAUP2005 Proceedings to be published in Journal of Physics:
Conference Serie
First upper limit analysis and results from LIGO science data: stochastic background
I describe analysis of correlations in the outputs of the three LIGO
interferometers from LIGO's first science run, held over 17 days in August and
September of 2002, and the resulting upper limit set on a stochastic background
of gravitational waves. By searching for cross-correlations between the LIGO
detectors in Livingston, LA and Hanford, WA, we are able to set a 90%
confidence level upper limit of h_{100}^2 Omega_0 < 23 +/- 4.6.Comment: 7 pages; 1 eps figures; proceeding from 2003 Edoardo Amaldi Meeting
on Gravitational Wave
Search for Electromagnetic Counterparts to LIGO-Virgo Candidates: Expanded Very Large Array
This paper summarizes a search for radio wavelength counterparts to candidate
gravitational wave events. The identification of an electromagnetic counterpart
could provide a more complete understanding of a gravitational wave event,
including such characteristics as the location and the nature of the
progenitor. We used the Expanded Very Large Array (EVLA) to search six galaxies
which were identified as potential hosts for two candidate gravitational wave
events. We summarize our procedures and discuss preliminary results.Comment: 4 pages; to appear in the New Horizons in Time Domain Astronomy,
Proceedings of IAU Symposium 285, eds. R. E. M. Griffin, R. J. Hanisch & R.
Seama
Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the FermiGamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory(INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV–EeV energy range using the Antares, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within ±500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle
Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity
We derive the decoupling limit of Massive Gravity on de Sitter in an
arbitrary number of space-time dimensions d. By embedding d-dimensional de
Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and
helicity-0 polarizations of the graviton. The resulting decoupling theory is
similar to that obtained around Minkowski. We take great care at exploring the
partially massless limit and define the unique fully non-linear candidate
theory that is free of the helicity-0 mode in the decoupling limit, and which
therefore propagates only four degrees of freedom in four dimensions. In the
latter situation, we show that a new Vainshtein mechanism is at work in the
limit m^2\to 2 H^2 which decouples the helicity-0 mode when the parameters are
different from that of partially massless gravity. As a result, there is no
discontinuity between massive gravity and its partially massless limit, just in
the same way as there is no discontinuity in the massless limit of massive
gravity. The usual bounds on the graviton mass could therefore equivalently
well be interpreted as bounds on m^2-2H^2. When dealing with the exact
partially massless parameters, on the other hand, the symmetry at m^2=2H^2
imposes a specific constraint on matter. As a result the helicity-0 mode
decouples without even the need of any Vainshtein mechanism.Comment: 30 pages. Some clarifications and references added. New subsection
'Symmetry and Counting in the Full Theory' added. New appendix 'St\"uckelberg
fields in the Na\"ive approach' added. Matches version published in JCA
- …
