40 research outputs found

    Living on Cold Substrata: New Insights and Approaches in the Study of Microphytobenthos Ecophysiology and Ecology in Kongsfjorden

    Get PDF
    Organisms in shallow waters at high latitudes are under pressure due to climate change. These areas are typically inhabited by microphytobenthos (MPB) communities, composed mainly of diatoms. Only sparse information is available on the ecophysiology and acclimation processes within MPBs from Arctic regions. The physico-chemical environment and the ecology and ecophysiology of benthic diatoms in Kongsfjorden (Svalbard, Norway) are addressed in this review. MPB biofilms cover extensive areas of sediment. They show high rates of primary production, stabilise sediment surfaces against erosion under hydrodynamic forces,and affect the exchange of oxygen and nutrients across the sediment-water interface. Additionally, this phototrophic community represents a key component in the functioning of the Kongsfjorden trophic web, particularly as a major food source for benthic suspension- or deposit-feeders. MPB in Kongsfjorden is confronted with pronounced seasonal variations in solar radiation, low temperatures, and hyposaline (meltwater) conditions in summer, as well as long periods of ice and snow cover in winter. From the few data available, it seems that these organisms can easily cope with these environmental extremes. The underlying physiological mechanisms that allow growth and photosynthesis to continue under widely varying abiotic parameters, along with vertical migration and heterotrophy, and biochemical features such as a pronounced fatty-acid metabolism and silicate incorporation are discussed. Existing gaps in our knowledge of benthic diatoms in Kongsfjorden, such as the chemical ecology of biotic interactions, need to be filled. In addition, since many of the underlying molecular acclimation mechanisms are poorly understood, modern approaches based on transcriptomics, proteomics, and/or metabolomics, in conjunction with cell biological and biochemical techniques, are urgently needed. Climate change models for the Arctic predict other multifactorial stressors, such as an increase in precipitation and permafrost thawing, with consequences for the shallow-water regions. Both precipitation and permafrost thawing are likely to increase nutrient-enriched, turbid freshwater runoff and may locally counteract the expected increase in coastal radiation availability. So far, complex interactions among factors, as well as the full genetic diversity and physiological plasticity of Arctic benthic diatoms, have only rarely been considered. The limited existing information is described and discussed in this review

    Spring phytoplankton onset after the ice break-up and sea-ice signature (Adélie Land, East Antarctica)

    Get PDF
    The phytoplankton onset following the spring ice break-up in Adélie Land, East Antarctica, was studied along a short transect, from 400 m off the continent to 5 km offshore, during the austral summer of 2002. Eight days after the ice break-up, some large colonial and solitary diatom cells, known to be associated with land-fast ice and present in downward fluxes, were unable to adapt in ice-free waters, while some other solitary and short-colony forming taxa (e.g., Fragilariopsis curta, F. cylindrus) did develop. Pelagic species were becoming more abundant offshore, replacing the typical sympagic (ice-associated) taxa. Archaeomonad cysts, usually associated with sea ice, were recorded in the surface waters nearshore. Rough weather restricted the data set, but we were able to confirm that some microalgae may be reliable sea-ice indicators and that seeding by sea ice only concerns a few taxa in this coastal area of East Antarctica. Keywords: Ice break-up; phytoplankton; sea-ice signature; East Antarctica (Published: 10 January 2011) Citation: Polar Research 2011, 30, 5910, doi: 10.3402/polar.v30i0.591

    New approaches and progress in the use of polar marine diatoms in reconstructing sea ice distribution

    Get PDF
    Reconstructing the paleo-latitudinal extent of sea ice in the Southern Ocean over time can be accomplished using modern diatom data. However, it is more difficult to extend the utility of diatom proxies farther back in time, to time periods characterized by species that are now extinct, since we are uncertain of the paleoenvironmental affiliation of those species we can’t observe in modern assemblages. We propose several research strategies to strengthen our ability to use diatom data to reconstruct sea ice history. These tactics include the evaluation of specific morphologic characteristics and distinct taxa, as well as the identification of specific adaptations that may have evolved following the initiation of sea ice in the Southern Ocean

    The diatom genus Proboscia in Antarctic waters

    No full text
    Sundström (1986) erected the genus Proboscia for solenoid diatoms whose valves tapered to a proboscis, but only assigned one species to it, the boreal Rhizosolenia alata Brightwell. We have found three species in the modem Antarctic phytoplankton that are affiliated to Proboscia. One is apparently identical to Sundström's P. alata, whilst P. inermis (Castracane) Jordan & Ligowski comb. nov. and P. truncata (Karsten) Nöthig & Ligowski comb. nov. are easily distinguished on the basis of valve and proboscis morphology. Winter and spring forms seem to be present in all three species, the winter forms being characterised by longer probosces; heterovalvar cells are not unusual. Terminal auxospores are documented for all three species. Similar fossil taxa may also be assignable to Proboscia

    The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective

    Get PDF
    A major aim of this review is to determine which physiological functions are adopted by adults and larvae to survive the winter season with low food supply and their relative importance. A second aim is to clarify the extent to which seasonal variation in larval and adult krill physiology is mediated by environmental factors with a strong seasonality, such as food supply or day light. Experimental studies on adult krill have demonstrated that speciWc physiological adaptations during autumn and winter, such as reduced metabolic rates and feeding activity, are not caused simply by the scarcity of food, as was previously assumed. These adaptations appear to be inXuenced by the local light regime. The physiological functions that larval krill adopt during winter (reduced metabolism, delayed development, lipid utilisation, and variable growth rates) are, in contrast to the adults, under direct control by the available food supply. During winter, the adults often seem to have little association with sea ice (at least until early spring). The larvae, however, feed within sea ice but mainly on the grazers of the ice algal community rather than on the algae themselves. In this respect, a miss-match in timing of the occurrence of the last phytoplankton blooms in autumn and the start of the sea ice formation, as has been increasingly observed in the west Antarctic Peninsula (WAP) region, will impact larval krill development during winter in terms of food supply and consequently the krill stock in this region
    corecore