4,795 research outputs found

    A parametric study on buckling of R/C columns exposed to fire

    Get PDF
    Buckling of concrete columns is a major issue in fire design, since heating of the columns will result in loss of stiffness and strength in the outer concrete layers. In the Dutch concrete code NEN 6720 (NEN, 1995), a quasi-linear theory of elasticity (KLE) method is provided for columns at ambient temperature. However, no literature is available showing whether this method could be adopted for elevated temperatures. Hence, an efficient calculation tool is needed to validate the applicability of this method in case of fire. As a first step, a cross-sectional calculation tool is introduced to calculate interaction curves of columns at ambient temperature. Further, the interaction diagrams obtained with this numerical method as well as the stiffness method provided in (Eurocode, 2004) and the KLE method are compared. Then, an assumed formula in the KLE-method for the nominal stiffness calculation is discussed considering interaction curves of columns in case of an ISO 834 fire. Finally, parameters like the fire duration and the slenderness ratio are investigated

    An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

    Get PDF
    Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph G=(V,E)G=(V,E) with nn vertices and mm edges, the textbook algorithm takes O(n+m)O(n+m) time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in O(n)O(n) worst case time per operation, and requires O(min{mlogn,n2})O\left(\min\{m \log n, n^2\}\right) preprocessing time. Our result improves the previous O(nlog3n)O(n \log^3 n) worst case update time algorithm by Baswana et al. and the O(nlogn)O(n \log n) time by Nakamura and Sadakane, and matches the trivial Ω(n)\Omega(n) lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al., together with a novel use of a tree-partition lemma by Duan and Zhan, and the celebrated fractional cascading technique by Chazelle and Guibas

    A parametric study on a curvature approximation based on interaction diagrams of concrete columns exposed to an ISO 834 standard fire

    Get PDF
    Fire has a significant influence on concrete structures and members. A concrete column, compared to other structural members, has most often to cope with vertical forces and bending moments from slabs and beams. Therefore, it is important to investigate the fire resistance of concrete columns. In fact, simplified methods are often adopted to evaluate the capacity of concrete columns. In the fib Model Code 2010, a curvature approximation is introduced. However, this method has not been validated to be used in case of fire. Hence, a parametric study is performed in this paper to investigate the application of this method. As a first step of this paper, a curvature approximation formula used at ambient temperature is introduced. As this formula is based on the curvature and in order to verify the application, a numerical tool that can obtain the bending moment and curvature relationships is presented and validated. Further, an ISO 834 standard fire is adopted. Finally, parameters like dimensions, the reinforcement ratio and the slenderness ratio are investigated. Comparing the effect of dimensions, the reinforcement ratio as well as the slenderness ratio, it is concluded that only the slenderness ratio has a significant influence on the column capacity with the proposed formula. The difference between the deflections obtained with the simplified method and the numerical values increase in function of the slenderness ratio (in case of the same axial load). However, this method is proven to be easy-to-use and safe for the prediction of the fire resistance of concrete columns.Published versio

    Phosphorylation of TGB1 by protein kinase CK2 promotes barley stripe mosaic virus movement in monocots and dicots.

    Get PDF
    The barley stripe mosaic virus (BSMV) triple gene block 1 (TGB1) protein is required for virus cell-to-cell movement. However, little information is available about how these activities are regulated by post-translational modifications. In this study, we showed that the BSMV Xinjiang strain TGB1 (XJTGB1) is phosphorylated in vivo and in vitro by protein kinase CK2 from barley and Nicotiana benthamiana. Liquid chromatography tandem mass spectrometry analysis and in vitro phosphorylation assays demonstrated that Thr-401 is the major phosphorylation site of the XJTGB1 protein, and suggested that a Thr-395 kinase docking site supports Thr-401 phosphorylation. Substitution of Thr-395 with alanine (T395A) only moderately impaired virus cell-to-cell movement and systemic infection. In contrast, the Thr-401 alanine (T401A) virus mutant was unable to systemically infect N. benthamiana but had only minor effects in monocot hosts. Substitution of Thr-395 or Thr-401 with aspartic acid interfered with monocot and dicot cell-to-cell movement and the plants failed to develop systemic infections. However, virus derivatives with single glutamic acid substitutions at Thr-395 and Thr-401 developed nearly normal systemic infections in the monocot hosts but were unable to infect N. benthamiana systemically, and none of the double mutants was able to infect dicot and monocot hosts. The mutant XJTGB1T395A/T401A weakened in vitro interactions between XJTGB1 and XJTGB3 proteins but had little effect on XJTGB1 RNA-binding ability. Taken together, our results support a critical role of CK2 phosphorylation in the movement of BSMV in monocots and dicots, and provide new insights into the roles of phosphorylation in TGB protein functions

    Dynamic model for piezotronic and piezo-phototronic devices under low and high frequency external compressive stresses (Featured)

    Get PDF
    In this work, we aim to establish a theoretical method for modelling the dynamic characteristics of piezotronics and piezo-phototronic devices. By taking the simplest piezotronic device, PN junction as an example, we combine the small signal model and the unified approach to investigate its diffusion capacitance and conductance when it is under both low and high frequency external compressive stresses. This approach is different from the traditional considerations that treat the piezopotential as a static value. Furthermore, we expand the theory into piezo-phototronic devices, e.g., a light emitting diode. The dynamic recombination rate and light emitting intensity are quantitatively calculated under different frequencies of external compressive stresses
    corecore