206 research outputs found
From digital rock to digital wellbore: Multiscale reconstruction and simulation
Subsurface rocks exhibit multiscale heterogeneity characteristics ranging from the microscopic to macroscopic levels. A significant challenge in geophysical exploration research is how to accurately analyze the cross-scale characterization of rock component structures and physical responses. The advancement of rock imaging equipment and computational resources has led to the emergence of digital rock physics technology as a crucial tool for addressing these challenges. This paper explores common methods and issues in three dimensional modeling and numerical simulations, spanning from micro-nano scale rocks to meter-scale wellbores, and presents relevant research insights. An initial review of the previous research and evolving trends in multiscale rock modeling and physical property simulation is firstly carried out. Subsequently, the primary methods and application range of multiscale simulation are summarized, followed by an outline of the modeling approaches and application directions for digital wellbores. The progression from digital rocks to digital wellbores signifies the successful cross-scale application of digital rock physics technology from the microscopic to macroscopic levels.Document Type: PerspectiveCited as: Chi, P., Sun, J., Yan, W., Cui, L. From digital rock to digital wellbore: Multiscale reconstruction and simulation. Advances in Geo-Energy Research, 2024, 13(1): 1-6. https://doi.org/10.46690/ager.2024.07.0
Cyclohexanone hydrogenation to cyclohexanol on phosphomolybdate supported Pt single-atom catalyst: A density functional theory study
Single-atom catalysts possess novel and unique properties and excellent catalytic activities because of their distinct geometric and electronic structures. In this study, we investigated the catalytic mechanism of the cyclohexanone hydrogenation by Pt@Na3PMA (PMA = PMo12O403−) using density functional theory calculations. Our findings indicate that the potential anchoring site for a single Pt atom is a fourfold hollow site on PMA. The bonding interaction between Pt and PMA arises from both ionic and covalent interactions of the Pt−O bond. The calculated adsorption energy suggests that the coadsorption of H2 and C6H10O molecules on Pt@Na3PMA exhibits high thermal stability. Furthermore, we proposed a catalytic cycle for the hydrogenation of cyclohexanone by Pt@Na3PMA, demonstrating that the hydrogenation of the carbonyl oxygen atom in cyclohexanone is the rate-determining step. Throughout the reaction, Na3PMA acts as an “electron sponge”, for accepting and donating electrons. It is expected that the results presented in this work will provide valuable insights into the hydrogenation of cyclohexanone
New ionic dinuclear Ir(III) Schiff base complexes with aggregation-induced phosphorescent emission (AIPE)
Two new ionic dinuclear Ir(III) Schiff base complexes which are straightforward to synthesise have luminescence quantum yields as high as 37% in neat films. These are the first examples of dinuclear ionic Ir(III) complexes that display aggregation-induced phosphorescent emission (AIPE)
Exploring cerebellar transcranial magnetic stimulation in post-stroke limb dysfunction rehabilitation: a narrative review
This review delves into the emerging field of cerebellar Transcranial Magnetic Stimulation (TMS) in the rehabilitation of limb dysfunction following a stroke. It synthesizes findings from randomized controlled trials and case studies, examining the efficacy, safety, and underlying mechanisms of cerebellar TMS. The review outlines advancements in TMS technologies, such as low-frequency repetitive TMS, intermittent Theta Burst Stimulation, and Cerebello-Motor Paired Associative Stimulation, and their integration with physiotherapy. The role of the cerebellum in motor control, the theoretical underpinnings of cerebellar stimulation on motor cortex excitability, and the indirect effects on cognition and motor learning are explored. Additionally, the review discusses current challenges, including coil types, safety, and optimal timing and modes of stimulation, and suggests future research directions. This comprehensive analysis highlights cerebellar TMS as a promising, though complex, approach in stroke rehabilitation, offering insights for its clinical optimization
Porcine Deltacoronavirus Nucleocapsid Protein Suppressed IFN-β Production by Interfering Porcine RIG-I dsRNA-Binding and K63-Linked Polyubiquitination
Porcine deltacoronavirus (PDCoV) is a newly detected porcine coronavirus causing serious vomiting and diarrhea in piglets, especially newborn piglets. There has been an outbreak of PDCoV in worldwide since 2014, causing significant economic losses in the pig industry. The interferon (IFN)-mediated antiviral response is an important component of virus-host interactions and plays an essential role in inhibiting virus infection. However, the mechanism of PDCoV escaping the porcine immune surveillance is unclear. In the present study, we demonstrated that the PDCoV nucleocapsid (N) protein antagonizes porcine IFN-β production after vesicular stomatitis virus (VSV) infection or poly(I:C) stimulation. PDCoV N protein also suppressed the activation of porcine IFN-β promoter when it was stimulated by porcine RLR signaling molecules. PDCoV N protein targeted porcine retinoic acid-inducible gene I (pRIG-I) and porcine TNF receptor associated factor 3 (pTRAF3) by directly interacting with them. The N-terminal region (1–246 aa) of PDCoV N protein was important for interacting with pRIG-I and interfere its function. We confirmed that PDCoV N antagonizes IFN-β production by associating with pRIG-I to impede it from binding double-stranded RNA. Furthermore, porcine Riplet (pRiplet) was an important activator for pRIG-I by mediating the K63-linked polyubiquitination. However, PDCoV N protein restrained the pRiplet binding pRIG-I to inhibit pRIG-I K63-linked polyubiquitination. Taken together, our results revealed a novel mechanism by which PDCoV N protein interferes with the early activation of pRIG-I in the host antiviral response. The novel findings provide a new insight into PDCoV on evading the host innate immune response and may provide new therapeutic targets and more efficacious vaccines strategies for PDCoV infections
Single-Cell Spatial Transcriptomics Unveils Platelet-Fueled Cycling Macrophages for Kidney Fibrosis.
With the increasing incidence of kidney diseases, there is an urgent need to develop therapeutic strategies to combat post-injury fibrosis. Immune cells, including platelets, play a pivotal role in this repair process, primarily through their released cytokines. However, the specific role of platelets in kidney injury and subsequent repair remains underexplored. Here, the detrimental role of platelets in renal recovery following ischemia/reperfusion injury and its contribution to acute kidney injury to chronic kidney disease transition is aimed to investigated. In this study, it is shown that depleting platelets accelerates injury resolution and significantly reduces fibrosis. Employing advanced single-cell and spatial transcriptomic techniques, macrophages as the primary mediators modulated by platelet signals is identified. A novel subset of macrophages, termed cycling M2, which exhibit an M2 phenotype combined with enhanced proliferative activity is uncovered. This subset emerges in the injured kidney during the resolution phase and is modulated by platelet-derived thrombospondin 1 (THBS1) signaling, acquiring profibrotic characteristics. Conversely, targeted inhibition of THBS1 markedly downregulates the cycling M2 macrophage, thereby mitigating fibrotic progression. Overall, this findings highlight the adverse role of platelet THBS1-boosted cycling M2 macrophages in renal injury repair and suggest platelet THBS1 as a promising therapeutic target for alleviating inflammation and kidney fibrosis
Identification and characterization of multiple novel picornaviruses in fecal samples of bar-headed goose
IntroductionThe bar-headed goose (Anser indicus), one of the most well-known high-altitude birds, is renowned for its adaptation to high-altitude environments. Previous studies have shown that they can be infected with highly pathogenic avian influenza; however, there is currently limited research on other viruses in bar-headed geese.MethodsIn this study, 10 fecal samples of healthy bar-headed geese were collected, and viral metagenomics method was conducted to identify novel picornaviruses.ResultsSeven novel picornaviruses were identified in the fecal samples of bar-headed geese. Most of these picornaviruses were genetically different from other currently known viruses in the NCBI dataset. Among them, PICV4 was determined to be a new species belonging to the Anativirus genus, PICV5 and PICV13 were classified as novel species belonging to the Hepatovirus genus, and the remaining four picornaviruses (PICV1, PICV19, PICV21, and PICV22) were identified as part of the Megrivirus A species of the Megrivirus genus. Recombinant analysis indicates that PICV21 was a potential recombinant, and the major and minor parents were PICV1 and PICV22, respectively.ConclusionThe findings of this study increase our understanding of the diversity of picornaviruses in bar-headed geese and provide practical viral genome information for the prevention and treatment of potential viral diseases affecting this species
Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice
Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1–estrogen (GLP-1–estrogen) conjugate designed to deliver estrogen to GLP1 receptor–enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1–estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies
Identification of multiple novel viruses in bar-headed goose feces from Tibet of China
IntroductionThe bar-headed goose is a typical high-altitude bird that primarily inhabits alpine lakes and wetlands in Central Asia, with a remarkable ability to adapt to high elevations. Previous studies have shown that they can be infected with parasites such as Cryptosporidium spp. At present, there were few reports on its infection with the virus.MethodsIn this study, we utilized viral metagenomics to conduct a detailed analysis of the viral components in the fecal samples of bar-headed geese (Anser indicus) from the Tibet region of China.ResultsMultiple novel viruses were identified including four novel astroviruses, four novel caliciviruses, ten novel circoviruses, and nineteen novel parvoviruses. Among them, four astroviruses shared the highest amino acid sequence identities of 63.45–99.47% with different avastrovirus strains. Four caliciviruses and ten circoviruses were identified as unclassified caliciviruses and unclassified circoviruses, separately. Nineteen parvoviruses clustering into four groups maybe four different novel species of the genus Chaphamaparvovirus.ConclusionThese newly discovered viruses have potential implications for the health of avian species, particularly bar-headed geese. This study not only helps us understand the health status of bar-headed geese, but also offers crucial genomic information for future disease prevention and treatment strategies
Identification and characterization of multiple novel viruses in fecal samples of cormorants
IntroductionCormorants, as protected wild animals by the State Forestry Administration of China, have a broad distribution across China. Previous studies have shown that they can be infected with multiple viruses in the Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Polyomaviridae families. There is limited knowledge about the other viruses that cormorants may carry and infect.MethodsIn this study, we employed viral metagenomics to identify novel viruses in the fecal samples collected from cormorants in Xiamen City, Fujian Province, China.ResultsTwo novel viruses were identified, including one novel picornavirus named Cormhepa01 and one novel avain hepevirus named CormhepaE. The genome of Cormhepa01 is 7,463 bp in length, which encodes a 2,260 aa polyprotien. Similar to other known picornaviruses, the conserved NTPase, proteinase, and polymerase motifs are presented in the 2C, 3C, and 3D proteins separately. Based on the phylogenetic analysis and amino acid sequence alignment, the CormhepaE may be assigned to a new picornavirus genus. The partial genome of CormhepaE is 6,546 bp in length. Compared with other avian hepatitis E virus strains, CormhepaE has multiple variable sites, which are distributed in motifs of the methyltransferase, helicase, and RdRp domains, separately. Based on the phylogenetic analysis, CormhepaE, together with another strain MG737712 isolated from sparrow, formed a new species of the Avihepevirus genus in the Hepeviridae family.ConclusionWe identified and characterized two novel cormorant viruses in this study. The findings of this study increase our understanding of the diversity of viruses in cormorants and provide practical viral genome information for the prevention and treatment of potential viral diseases affecting this species
- …
