176 research outputs found
Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization
As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded similar to 0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of similar to 81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs
Dementia Assessment Using Mandarin Speech with an Attention-based Speech Recognition Encoder
Dementia diagnosis requires a series of different testing methods, which is
complex and time-consuming. Early detection of dementia is crucial as it can
prevent further deterioration of the condition. This paper utilizes a speech
recognition model to construct a dementia assessment system tailored for
Mandarin speakers during the picture description task. By training an
attention-based speech recognition model on voice data closely resembling
real-world scenarios, we have significantly enhanced the model's recognition
capabilities. Subsequently, we extracted the encoder from the speech
recognition model and added a linear layer for dementia assessment. We
collected Mandarin speech data from 99 subjects and acquired their clinical
assessments from a local hospital. We achieved an accuracy of 92.04% in
Alzheimer's disease detection and a mean absolute error of 9% in clinical
dementia rating score prediction.Comment: submitted to IEEE ICASSP 202
The mechanism of palmatine-mediated intestinal flora and host metabolism intervention in OA-OP comorbidity rats
BackgroundErXian decoction is a Chinese herbal compound that can prevent and control the course of osteoarthritis (OA) and osteoporosis (OP). OP and OA are two age-related diseases that often coexist in elderly individuals, and both are associated with dysregulation of the gut microbiome. In the initial study, Palmatine (PAL) was obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and network pharmacological screening techniques, followed by 16S rRNA sequencing and serum metabolomics of intestinal contents, to explore the mechanism of PAL in the treatment of OA and OP.MethodsThe rats selected for this study were randomly divided into three groups: a sham group, an OA-OP group and a PAL group. The sham group was intragastrically administered normal saline solution, and the PLA group was treated with PAL for 56 days. Through microcomputed tomography (micro-CT), ELISA, 16S rRNA gene sequencing and non-targeted metabonomics research, we explored the potential mechanism of intestinal microbiota and serum metabolites in PAL treatment of OA-OP rats.ResultsPalmatine significantly repair bone microarchitecture of rat femur in OA-OP rats and improved cartilage damage. The analysis of intestinal microflora showed that PAL could also improve the intestinal microflora disorder of OA-OP rats. For example, the abundance of Firmicutes, Bacteroidota, Actinobacteria, Lactobacillus, unclassified_f_Lachnospiraceae, norank_f_Muribaculaceae, Lactobacillaceae, Lachnospiraceae and Muribaculaceae increased after PAL intervention. In addition, the results of metabolomics data analysis showed that PAL also change the metabolic status of OA-OP rats. After PAL intervention, metabolites such as 5-methoxytryptophol, 2-methoxy acetaminophen sulfate, beta-tyrosine, indole-3-carboxylic acid-O-sulfate and cyclodopa glucoside increased. Association analysis of metabolomics and gut microbiota (GM) showed that the communication of multiple flora and different metabolites played an important role in OP and OA.ConclusionPalmatine can improve cartilage degeneration and bone loss in OA-OP rats. The evidence we provided supports the idea that PAL improves OA-OP by altering GM and serum metabolites. In addition, the application of GM and serum metabolomics correlation analysis provides a new strategy for uncovering the mechanism of herbal treatment for bone diseases
Single-Cell Spatial Transcriptomics Unveils Platelet-Fueled Cycling Macrophages for Kidney Fibrosis.
With the increasing incidence of kidney diseases, there is an urgent need to develop therapeutic strategies to combat post-injury fibrosis. Immune cells, including platelets, play a pivotal role in this repair process, primarily through their released cytokines. However, the specific role of platelets in kidney injury and subsequent repair remains underexplored. Here, the detrimental role of platelets in renal recovery following ischemia/reperfusion injury and its contribution to acute kidney injury to chronic kidney disease transition is aimed to investigated. In this study, it is shown that depleting platelets accelerates injury resolution and significantly reduces fibrosis. Employing advanced single-cell and spatial transcriptomic techniques, macrophages as the primary mediators modulated by platelet signals is identified. A novel subset of macrophages, termed cycling M2, which exhibit an M2 phenotype combined with enhanced proliferative activity is uncovered. This subset emerges in the injured kidney during the resolution phase and is modulated by platelet-derived thrombospondin 1 (THBS1) signaling, acquiring profibrotic characteristics. Conversely, targeted inhibition of THBS1 markedly downregulates the cycling M2 macrophage, thereby mitigating fibrotic progression. Overall, this findings highlight the adverse role of platelet THBS1-boosted cycling M2 macrophages in renal injury repair and suggest platelet THBS1 as a promising therapeutic target for alleviating inflammation and kidney fibrosis
Estrogens stimulate serotonin neurons to inhibit binge-like eating in mice
Binge eating afflicts approximately 5% of US adults, though effective treatments are limited. Here, we showed that estrogen replacement substantially suppresses binge-like eating behavior in ovariectomized female mice. Estrogen-dependent inhibition of binge-like eating was blocked in female mice specifically lacking estrogen receptor-α (ERα) in serotonin (5-HT) neurons in the dorsal raphe nuclei (DRN). Administration of a recently developed glucagon-like peptide-1–estrogen (GLP-1–estrogen) conjugate designed to deliver estrogen to GLP1 receptor–enhanced regions effectively targeted bioactive estrogens to the DRN and substantially suppressed binge-like eating in ovariectomized female mice. Administration of GLP-1 alone reduced binge-like eating, but not to the same extent as the GLP-1–estrogen conjugate. Administration of ERα-selective agonist propylpyrazole triol (PPT) to murine DRN 5-HT neurons activated these neurons in an ERα-dependent manner. PPT also inhibited a small conductance Ca2+-activated K+ (SK) current; blockade of the SK current prevented PPT-induced activation of DRN 5-HT neurons. Furthermore, local inhibition of the SK current in the DRN markedly suppressed binge-like eating in female mice. Together, our data indicate that estrogens act upon ERα to inhibit the SK current in DRN 5-HT neurons, thereby activating these neurons to suppress binge-like eating behavior and suggest ERα and/or SK current in DRN 5-HT neurons as potential targets for anti-binge therapies
Analyses of a chromosome-scale genome assembly reveal the origin and evolution of cultivated chrysanthemum
DATA AVAILABILITY : The raw sequencing data generated in this study have been deposited
in the NCBI under accession PRJNA796762 and PRJNA895586 The
chloroplast andmitochondrial genome were also available at GenBank
under the accession number OP104251 and OP104742 respectively.
The assembled genome sequences and annotations are available at
Figshare [https://doi.org/10.6084/m9.figshare.21655364.v2]. The Arabidopsis
ABCE and chrysanthemum CYC2 genes were used as query
sequences for gene family identification, which are available at Figshare
[https://doi.org/10.6084/m9.figshare.21610305]. Source data are
provided with this paper.Chrysanthemum (Chrysanthemum morifolium Ramat.) is a globally important
ornamental plant with great economic, cultural, and symbolic value. However,
research on chrysanthemum is challenging due to its complex genetic background.
Here, we report a near-complete assembly and annotation for
C. morifolium comprising 27 pseudochromosomes (8.15 Gb; scaffold N50 of
303.69Mb). Comparative and evolutionary analyses reveal a whole-genome
triplication (WGT) event shared by Chrysanthemum species approximately 6
million years ago (Mya) and the possible lineage-specific polyploidization of
C. morifolium approximately 3 Mya. Multilevel evidence suggests that
C. morifolium is likely a segmental allopolyploid. Furthermore, a combination
of genomics and transcriptomics approaches demonstrate the C. morifolium
genome can be used to identify genes underlying key ornamental traits. Phylogenetic
analysis of CmCCD4a traces the flower colour breeding history of
cultivated chrysanthemum. Genomic resources generated from this study
could help to accelerate chrysanthemum genetic improvement.The National Natural Science Foundation of China, the Natural Science Fund of Jiangsu Province, China Agriculture Research System, the National Key Research and Development Program of China, the “JBGS” Project of Seed Industry Revitalisation in Jiangsu Province, the European Union’s Horizon 2020 research and innovation program from European Research Council, the Methusalem funding from Ghent University, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution.https://www.nature.com/ncomms/am2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-15:Life on lan
High-resolution QTL mapping for grain appearance traits and co-localization of chalkiness-associated differentially expressed candidate genes in rice
Adaptive iterative hard thresholding for low-rank matrix recovery and rank-one measurements
Effect of technetium-99 conjugated with methylene diphosphonate on IgM-RF, IgG-RF and IgA-RF
- …
