125 research outputs found

    Estimating neural signal dynamics in the human brain

    Get PDF
    Although brain imaging methods are highly effective for localizing the effects of neural activation throughout the human brain in terms of the blood oxygenation level dependent (BOLD) response, there is currently no way to estimate the underlying neural signal dynamics in generating the BOLD response in each local activation region (except for processes slower than the BOLD time course). Knowledge of the neural signal is critical if spatial mapping is to progress to the analysis of dynamic information flow through the cortical networks as the brain performs its tasks. We introduce an analytic approach that provides a new level of conceptualization and specificity in the study of brain processing by non-invasive methods. This technique allows us to use brain imaging methods to determine the dynamics of local neural population responses to their native temporal resolution throughout the human brain, with relatively narrow confidence intervals on many response properties. The ability to characterize local neural dynamics in the human brain represents a significant enhancement of brain imaging capabilities, with potential applications ranging from general cognitive studies to assessment of neuropathologies

    Drawing enhances cross-modal memory plasticity in the human brain: a case study in a totally blind adult

    Get PDF
    In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or “sketchpad,” for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw

    Brain Reorganization in Late Adulthood: Rapid Left-to-Right Switch of Handedness Through Memory-Drawing Training

    Get PDF
    The neural correlates of hand preference are still debatable, and the very few studies on the mechanisms of enforced change of handedness from left to right are all restricted to early childhood. We were able to address the question of retraining handedness in late adulthood for the first time, well outside the accepted critical period for brain plasticity, through a unique training utilizing the complex motor task of blind memory-guided drawing, in a totally blind, congenitally left-handed man. Ten hours of this Cognitive-Kinesthetic Drawing Training, which the author initially developed to drive neuroplasticity in blindness rehabilitation, was sufficient to generate a profound switch in the cortical lateralization of motor control. This study provides new insights into the neuroplasticity of motor control architecture. The results are of high relevance to the long-standing debate about the sources of hemispheric asymmetry. The unprecedented effect on handedness of the rapid Cognitive-Kinesthetic Drawing Training implies a powerful potential of this training for further rehabilitation domains, such as the rehabilitation of stroke or trauma affecting hand control
    corecore