2 research outputs found
Glucosinolates With Their Hydrolysis Products from Two Cruciferous Plants with Study of Antidiabetic Activity Based on Molecular Docking
Abstract
The glucosinolates (Gls.) are natural bioactive compounds which lead to the formation of different metabolites called isothiocyanates(ITC) having various therapeutic effects. So, this study aim to isolate the glucosinolates of both Carrichtera annua L.(DC) (CA) and Farsetia aegyptia Turra (FA) belonging to Crucifereae family. The total Gls. were isolated from the aqueous methanolic extract of both plants and further purified on acidic aluminum oxide column. Some of the obtained Gls. was identified as it is using different spectroscopic measurements (UV, NMR and MS) and the rest were hydrolyzed using myrosinase enzyme to the corresponding isothiocyanates (ITC) which were identified by GC/MS. only one glucosinolate was identified in CA as: 4-methylthio-3-butenyl Gls ( MTBG). through chromatographic and spectroscopic measurements in addition to 6-methyl sulfonylhexyl isothiocyanates(ITC), while 6-methyl sulfonyl-6-hydroxy hexyl ITC, 4-pentenyl ITC, 3-Methylthio propyl ITC, 5-hydroxy pentyl ITC and 4-methylsulphinyl butyl ITC from FA. The docking study targeted a α-glucosidase and amylase, to examine a mode of action of the 4-methylthio-3-butenylglucosinolate. Molecular docking was performed to identify potency of Gls. against hyperglycemia. The data obtained revealed that the Gls. has high binding activity Via α-glucosidase and amylase. Furthermore, further Drug studies as likeness and ADME/T were performed, which proposed that their ligands may be have a good pharmacokinetic character, with no carcinogenesis effect.</jats:p
Clinical Resistant Strains of Enterococci and Their Correlation to Reduced Susceptibility to Biocides: Phenotypic and Genotypic Analysis of Macrolides, Lincosamides, and Streptogramins
Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved resistance genes were screened in the resistant isolates. The current results showed high resistance rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation) and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The present findings showed a significant correlation between MLS resistance and reduced susceptibility to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role of efflux in developing cross-resistance to both MLS antibiotics and biocides.</jats:p
