58 research outputs found
Replication fork regression in repetitive DNAs
Among several different types of repetitive sequences found in the human genome, this study has examined the telomeric repeat, necessary for the protection of chromosome termini, and the disease-associated triplet repeat (CTG)·(CAG)(n). Evidence suggests that replication of both types of repeats is problematic and that a contributing factor is the repetitive nature of the DNA itself. Here we have used electron microscopy to investigate DNA structures formed at replication forks on large model DNAs containing these repeat sequences, in an attempt to elucidate the contributory effect that these repetitive DNAs may have on their replication. Visualization of the DNA revealed that there is a high propensity for a paused replication fork to spontaneously regress when moving through repetitive DNAs, and that this results in a four-way chickenfoot intermediate that could present a significant block to replication in vivo, possibly leading to unwanted recombination events, amplifications or deletions
NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47
Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus
The Basic Domain of TRF2 Directs Binding to DNA Junctions Irrespective of the Presence of TTAGGG Repeats
The replication of long tracts of telomeric repeats may require specific factors to avoid fork regression (Fouché, N., Ozgür, S., Roy, D., and Griffith, J. (2006) Nucleic Acids Res., in press). Here we show that TRF2 binds to model replication forks and four-way junctions in vitro in a structure-specific but sequence-independent manner. A synthetic peptide encompassing the TRF2 basic domain also binds to DNA four-way junctions, whereas the TRF2 truncation mutant (TRF2(DeltaB)) and a mutant basic domain peptide do not. In the absence of the basic domain, the ability of TRF2 to localize to model telomere ends and facilitate t-loop formation in vitro is diminished. We propose that TRF2 plays a key role during telomere replication in binding chickenfoot intermediates of telomere replication fork regression. Junction-specific binding would also allow TRF2 to stabilize a strand invasion structure that is thought to exist at the strand invasion site of the t-loop
A role for monoubiquitinated FANCD2 at telomeres in ALT cells
Both Fanconi anemia (FA) and telomere dysfunction are associated with chromosome instability and an increased risk of cancer. Because of these similarities, we have investigated whether there is a relationship between the FA protein, FANCD2 and telomeres. We find that FANCD2 nuclear foci colocalize with telomeres and PML bodies in immortalized telomerase-negative cells. These cells maintain telomeres by alternative lengthening of telomeres (ALT). In contrast, FANCD2 does not colocalize with telomeres or PML bodies in cells which express telomerase. Using a siRNA approach we find that FANCA and FANCL, which are components of the FA nuclear core complex, regulate FANCD2 monoubiquitination and the telomeric localization of FANCD2 in ALT cells. Transient depletion of FANCD2, or FANCA, results in a dramatic loss of detectable telomeres in ALT cells but not in telomerase-expressing cells. Furthermore, telomere loss following depletion of these proteins in ALT cells is associated with decreased homologous recombination between telomeres (T-SCE). Thus, the FA pathway has a novel function in ALT telomere maintenance related to DNA repair. ALT telomere maintenance is therefore one mechanism by which monoubiquitinated FANCD2 may promote genetic stability
Evidence That a RecQ Helicase Slows Senescence by Resolving Recombining Telomeres
RecQ helicases, including Saccharomyces cerevisiae Sgs1p and the human Werner syndrome protein, are important for telomere maintenance in cells lacking telomerase activity. How maintenance is accomplished is only partly understood, although there is evidence that RecQ helicases function in telomere replication and recombination. Here we use two-dimensional gel electrophoresis (2DGE) and telomere sequence analysis to explore why cells lacking telomerase and Sgs1p (tlc1 sgs1 mutants) senesce more rapidly than tlc1 mutants with functional Sgs1p. We find that apparent X-shaped structures accumulate at telomeres in senescing tlc1 sgs1 mutants in a RAD52- and RAD53-dependent fashion. The X-structures are neither Holliday junctions nor convergent replication forks, but instead may be recombination intermediates related to hemicatenanes. Direct sequencing of examples of telomere I-L in senescing cells reveals a reduced recombination frequency in tlc1 sgs1 compared with tlc1 mutants, indicating that Sgs1p is needed for tlc1 mutants to complete telomere recombination. The reduction in recombinants is most prominent at longer telomeres, consistent with a requirement for Sgs1p to generate viable progeny following telomere recombination. We therefore suggest that Sgs1p may be required for efficient resolution of telomere recombination intermediates, and that resolution failure contributes to the premature senescence of tlc1 sgs1 mutants
Sit down, relax and unwind: structural insights into RecQ helicase mechanisms
Helicases are specialized molecular motors that separate duplex nucleic acids into single strands. The RecQ family of helicases functions at the interface of DNA replication, recombination and repair in bacterial and eukaryotic cells. They are key, multifunctional enzymes that have been linked to three human diseases: Bloom's, Werner's and Rothmund–Thomson's syndromes. This review summarizes recent studies that relate the structures of RecQ proteins to their biochemical activities
The G-Quadruplex Ligand Telomestatin Impairs Binding of Topoisomerase IIIα to G-Quadruplex-Forming Oligonucleotides and Uncaps Telomeres in ALT Cells
In Alternative Lengthening of Telomeres (ALT) cell lines, specific nuclear bodies called APBs (ALT-associated PML bodies) concentrate telomeric DNA, shelterin components and recombination factors associated with telomere recombination. Topoisomerase IIIα (Topo III) is an essential telomeric-associated factor in ALT cells. We show here that the binding of Topo III to telomeric G-overhang is modulated by G-quadruplex formation. Topo III binding to G-quadruplex-forming oligonucleotides was strongly inhibited by telomestatin, a potent and specific G-quadruplex ligand. In ALT cells, telomestatin treatment resulted in the depletion of the Topo III/BLM/TRF2 complex and the disruption of APBs and led to the segregation of PML, shelterin components and Topo III. Interestingly, a DNA damage response was observed at telomeres in telomestatin-treated cells. These data indicate the importance of G-quadruplex stabilization during telomere maintenance in ALT cells. The function of TRF2/Topo III/BLM in the resolution of replication intermediates at telomeres is discussed
The Princeton Protein Orthology Database (P-POD): A Comparative Genomics Analysis Tool for Biologists
Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools
- …
