1,759 research outputs found

    A Short-term Intervention for Long-term Fairness in the Labor Market

    Full text link
    The persistence of racial inequality in the U.S. labor market against a general backdrop of formal equality of opportunity is a troubling phenomenon that has significant ramifications on the design of hiring policies. In this paper, we show that current group disparate outcomes may be immovable even when hiring decisions are bound by an input-output notion of "individual fairness." Instead, we construct a dynamic reputational model of the labor market that illustrates the reinforcing nature of asymmetric outcomes resulting from groups' divergent accesses to resources and as a result, investment choices. To address these disparities, we adopt a dual labor market composed of a Temporary Labor Market (TLM), in which firms' hiring strategies are constrained to ensure statistical parity of workers granted entry into the pipeline, and a Permanent Labor Market (PLM), in which firms hire top performers as desired. Individual worker reputations produce externalities for their group; the corresponding feedback loop raises the collective reputation of the initially disadvantaged group via a TLM fairness intervention that need not be permanent. We show that such a restriction on hiring practices induces an equilibrium that, under particular market conditions, Pareto-dominates those arising from strategies that statistically discriminate or employ a "group-blind" criterion. The enduring nature of equilibria that are both inequitable and Pareto suboptimal suggests that fairness interventions beyond procedural checks of hiring decisions will be of critical importance in a world where machines play a greater role in the employment process.Comment: 10 page

    The 3-rainbow index of a graph

    Full text link
    Let GG be a nontrivial connected graph with an edge-coloring c:E(G){1,2,...,q},c: E(G)\rightarrow \{1,2,...,q\}, qNq \in \mathbb{N}, where adjacent edges may be colored the same. A tree TT in GG is a rainbowtreerainbow tree if no two edges of TT receive the same color. For a vertex subset SV(G)S\subseteq V(G), a tree that connects SS in GG is called an SS-tree. The minimum number of colors that are needed in an edge-coloring of GG such that there is a rainbow SS-tree for each kk-subset SS of V(G)V(G) is called kk-rainbow index, denoted by rxk(G)rx_k(G). In this paper, we first determine the graphs whose 3-rainbow index equals 2, m,m, m1m-1, m2m-2, respectively. We also obtain the exact values of rx3(G)rx_3(G) for regular complete bipartite and multipartite graphs and wheel graphs. Finally, we give a sharp upper bound for rx3(G)rx_3(G) of 2-connected graphs and 2-edge connected graphs, and graphs whose rx3(G)rx_3(G) attains the upper bound are characterized.Comment: 13 page

    Some firms actively use CSR to improve their image in the public media

    Get PDF
    A good image brings financial rewards, write Steven Cahan, Chen Chen, Lily Chen and Nick (Nhut H. Nguyen

    Roles of aquaporins in Setaria viridis stem development and sugar storage

    Get PDF
    Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis.Samantha A. McGaughey, Hannah L. Osborn, Lily Chen, Joseph L. Pegler, Stephen D. Tyerman, Robert T. Furbank, Caitlin S. Byrt and Christopher P. L. Gro
    corecore