47 research outputs found
Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA
The deep subsurface is an enormous repository of microbial life. However, the metabolic capabilities of these microorganisms and the degree to which they are dependent on surface processes are largely unknown. Due to the logistical difficulty of sampling and inherent heterogeneity, the microbial populations of the terrestrial subsurface are poorly characterized. In an effort to better understand the biogeochemistry of deep terrestrial habitats, we evaluate the energetic yield of chemolithotrophic metabolisms and microbial diversity in the Sanford Underground Research Facility (SURF) in the former Homestake Gold Mine, SD, USA. Geochemical data, energetic modeling, and DNA sequencing were combined with principle component analysis to describe this deep (down to 8100 ft below surface), terrestrial environment. SURF provides access into an iron-rich Paleoproterozoic metasedimentary deposit that contains deeply circulating groundwater. Geochemical analyses of subsurface fluids reveal enormous geochemical diversity ranging widely in salinity, oxidation state (ORP 330 to −328 mV), and concentrations of redox sensitive species (e.g., Fe(2+) from near 0 to 6.2 mg/L and Σ S(2-) from 7 to 2778μg/L). As a direct result of this compositional buffet, Gibbs energy calculations reveal an abundance of energy for microorganisms from the oxidation of sulfur, iron, nitrogen, methane, and manganese. Pyrotag DNA sequencing reveals diverse communities of chemolithoautotrophs, thermophiles, aerobic and anaerobic heterotrophs, and numerous uncultivated clades. Extrapolated across the mine footprint, these data suggest a complex spatial mosaic of subsurface primary productivity that is in good agreement with predicted energy yields. Notably, we report Gibbs energy normalized both per mole of reaction and per kg fluid (energy density) and find the later to be more consistent with observed physiologies and environmental conditions. Further application of this approach will significantly expand our understanding of the deep terrestrial biosphere
Genomic Description of ‘Candidatus Abyssubacteria,’ a Novel Subsurface Lineage Within the Candidate Phylum Hydrogenedentes
The subsurface biosphere is a massive repository of fixed carbon, harboring approximately 90% of Earth’s microbial biomass. These microbial communities drive transformations central to Earth’s biogeochemical cycles. However, there is still much we do not understand about how complex subterranean microbial communities survive and how they interact with these cycles. Recent metagenomic investigation of deeply circulating terrestrial subsurface fluids revealed the presence of several novel lineages of bacteria. In one particular example, phylogenomic analyses do not converge on any one previously identified taxon; here we describe the first full genomic sequences of a new bacterial lineage within the candidate phylum Hydrogenedentes, ‘Candidatus Abyssubacteria.’ A global survey revealed that members of this proposed lineage are widely distributed in both marine and terrestrial subsurface environments, but their physiological and ecological roles have remained unexplored. Two high quality metagenome assembled genomes (SURF_5: 97%, 4%; SURF_17: 91% and 4% completeness and contamination, respectively) were reconstructed from fluids collected 1.5 kilometers below surface in the former Homestake gold mine—now the Sanford Underground Research Facility (SURF)—in Lead, South Dakota, United States. Metabolic reconstruction suggests versatile metabolic capability, including possible nitrogen reduction, sulfite oxidation, sulfate reduction and homoacetogenesis. This first glimpse into the metabolic capabilities of these cosmopolitan bacteria suggests that they are involved in key geochemical processes, including sulfur, nitrogen, and carbon cycling, and that they are adapted to survival in the dark, often anoxic, subsurface biosphere
Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community.
Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community.
Scaffold ID files
IMG/M-relevant files needed to isolate scaffold sets
for all 77 genomes from metagenome
All fasta files for bacterial and archaeal genomes from metagenomes, SURF microbial ecology project.
Sequence files for bacterial and archaeal genomes recovered from metagenomes at SURF, a deep terrestrial subsurface environment
A FASTA file containing 44 SSU rRNA genes with length >300 base pairs, including 40 extracted from the 77 genomes from metagenomes
A FASTA file containing 44 SSU rRNA genes with length >300 base pairs, including 40 extracted from the 77 genomes from metagenomes, plus 4 additional SSU rRNA genes identified in preliminary (i.e. non-reported) GFM
A metagenomic view of novel microbial and metabolic diversity found within the deep terrestrial biosphere
ABSTRACTThe deep terrestrial subsurface is a large and diverse microbial habitat and a vast repository of biomass. However, in relation to its size and physical heterogeneity we have limited understanding of taxonomic and metabolic diversity in this realm. Here we present a detailed metagenomic analysis of samples from the Deep Mine Microbial Observatory (DeMMO) spanning depths from the surface to 1.5 km deep in the crust. From these eight geochemically and spatially distinct fluid samples we reconstructed ∼600 metagenome assembled genomes (MAGs), representing 50 distinct phyla and including 18 candidate phyla. These novel clades include many members of the Patescibacteria superphylum and two new MAGs from candidate phylum OLB16, a phylum originally identified in DeMMO fluids and for which only one other MAG is currently available. We find that microbes spanning this expansive phylogenetic diversity and physical space are often capable of numerous dissimilatory energy metabolisms and are poised to take advantage of nutrients as they become available in relatively isolated fracture fluids. This metagenomic dataset is contextualized within a four-year geochemical and 16S rRNA time series, adding another invaluable piece to our knowledge of deep subsurface microbial ecology.</jats:p
Genomic Description of ‘Candidatus Abyssubacteria,’ a Novel Subsurface Lineage Within the Candidate Phylum Hydrogenedentes
Data_Sheet_2_Genomic Description of ‘Candidatus Abyssubacteria,’ a Novel Subsurface Lineage Within the Candidate Phylum Hydrogenedentes.xlsx
The subsurface biosphere is a massive repository of fixed carbon, harboring approximately 90% of Earth’s microbial biomass. These microbial communities drive transformations central to Earth’s biogeochemical cycles. However, there is still much we do not understand about how complex subterranean microbial communities survive and how they interact with these cycles. Recent metagenomic investigation of deeply circulating terrestrial subsurface fluids revealed the presence of several novel lineages of bacteria. In one particular example, phylogenomic analyses do not converge on any one previously identified taxon; here we describe the first full genomic sequences of a new bacterial lineage within the candidate phylum Hydrogenedentes, ‘Candidatus Abyssubacteria.’ A global survey revealed that members of this proposed lineage are widely distributed in both marine and terrestrial subsurface environments, but their physiological and ecological roles have remained unexplored. Two high quality metagenome assembled genomes (SURF_5: 97%, 4%; SURF_17: 91% and 4% completeness and contamination, respectively) were reconstructed from fluids collected 1.5 kilometers below surface in the former Homestake gold mine—now the Sanford Underground Research Facility (SURF)—in Lead, South Dakota, United States. Metabolic reconstruction suggests versatile metabolic capability, including possible nitrogen reduction, sulfite oxidation, sulfate reduction and homoacetogenesis. This first glimpse into the metabolic capabilities of these cosmopolitan bacteria suggests that they are involved in key geochemical processes, including sulfur, nitrogen, and carbon cycling, and that they are adapted to survival in the dark, often anoxic, subsurface biosphere.</p
