1,803 research outputs found
Role of ABCB1 C3435T variant in response to antiepileptic drugs in epilepsy: a review
Over-expression of P-glycoprotein (P-gp), the encoded product of the ATP-binding cassette (ABC), sub-family B, member 1 (ABCB1/MDR1) gene, plays an important role in mediating multidrug resistance to antiepileptic drugs (AEDs) in about 30% of patients with epilepsy. Genetic variation may in part explain inter-individual differences in phenotype-genotype relationships in the pharmacological response of epilepsy patients to AEDs. The synonymous C3435T polymorphism is one of the most common allelic variants in the ABCB1/MDR1 gene, proposed in the causation of refractory epilepsy. Many studies have shown the relationship between C3435T polymorphism and refractoriness to AEDs in epilepsy. However, there is controversy between the findings of various studies, that is, whether ABCB1/MDR1 C3435T gene polymorphism is associated with response to AEDs in epilepsy patients. This review provides a background and discusses the results of investigations on possible confounding factors affecting the interpretation and implementation of association studies in this area
A slowly expanding disk and fast bipolar outflow from the S star π1 gruis
We study the molecular outflow of the nearby evolved S star π1 Gru. We imaged the outflow in CO J = 2-1 and dust continuum with the Submillimeter Array. The CO emission was detected over a very broad velocity width of ∼90 km s-1. Our high-resolution images show that the outflow at low velocities (≤15 km s-1) is elongated east-west and at high velocities (≥25 km s-1) is displaced north (at redshifted velocities) and south (blueshifted velocities) of center as defined by the dust continuum source. We model the spatial-kinematic structure of the low-velocity outflow as a flared disk with a central cavity of radius 200 AU and an expansion velocity of 11 km s-1, inclined by 55° to our line of sight. We attribute the high-velocity component to a bipolar outflow that emerges perpendicular to this disk with a velocity of up to ∼45 km s-1. This high-velocity outflow may play an important role in shaping the gas envelope previously ejected by the AGB star and thus produce a bipolar morphology when the object evolves into a proto-planetary nebula. © 2006. The American Astronomical Society. All rights reserved.published_or_final_versio
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Water Supply Interruptions and Suspected Cholera Incidence: A Time-Series Regression in the Democratic Republic of the Congo
Data that underpins a publication on water supply interruptions and suspected Cholera incidenc
Nanomechanical investigation of soft biological cell adhesion using atomic force microscopy
Mechanical coupling between living cells is a complex process that is important for a variety of biological processes. In this study the effects of specific biochemical treatment on cell-to-cell adhesion and single cell mechanics were systematically investigated using atomic force microscopy (AFM) single cell force spectroscopy. Functionalised AFM tipless cantilevers were used for attaching single suspended cells that were brought in contact with substrate cells. Cell-to-cell adhesion parameters, such as maximum unbinding force (F max) and work or energy of detachment (W D), were extracted from the retraction force–displacement (F–d) curves. AFM indentation experiments were performed by indenting single cells with a spherical microbead attached to the cantilever. Hertzian contact model was applied to determine the elastic modulus (E) of single cells. Following treatment of the cells with neutralising antibody for epithelial (E)-cadherin, F max was increased by 25%, whereas W D decreased by 11% in response to a 43% increase in E. The results suggest that although the adhesion force between cells was increased after treatment, the energy of adhesion was decreased due to the reduced displacement separation as manifested by the loss of elastic deformation. Conclusively, changes in single cell mechanics are important underlying factors contributing to cell-to-cell adhesion and hence cytomechanical characterization is critical for cell adhesion measurements
Melanotic oncocytic metaplasia of the nasopharynx as a benign mimicker of malignant melanoma: a case report
<p>Abstract</p> <p>Introduction</p> <p>Melanotic variant of oncocytic metaplasia of the nasopharynx is an extremely rare condition.</p> <p>Case report</p> <p>A 73-year-old Japanese man presented with nasal congestion and chill. Nasoscopic examination revealed multiple black nodules around the bilateral torus tubarius. The nodules were biopsied to determine the histology. The clinical differential diagnosis was malignant melanoma or hemangioma. Microscopically, there were oncocytic plump cells with abundant brown pigmented granules showing glandular pattern. No significant atypia was found. The pigment was positive for Fontana-Masson staining, and negative for Berlin blue staining, showing that it was melanin pigment. Immunohistochemically, S100-positive HMB45-negative dendritic cells were also found.</p> <p>Conclusion</p> <p>Such a pigmented variant of benign oncocytic lesion is very rare, and only 15 cases have been reported in the English literature. As a benign mimicker of malignant melanoma, melanocytic oncocytic metaplasia should be always taken into consideration in the clinical setting.</p
Comparison of bend angle measurements in fresh cryopreserved cartilage specimens after electromechanical reshaping
Cryopreservation of cartilage has been investigated for decades and is currently an established protocol. However, the reliability and applicability of cartilage cryopreservation for the use in electromechanical reshaping (EMR) has not been studied exclusively. A system to cryopreserve large numbers of tissue specimens provides a steady source of cartilage of similar quality for experimentation at later dates. This will reduce error that may arise from different cartilage stock, and has the potential to maximize efficiency under time constraints. Our study utilizes a unique methodology to cryopreserve septal cartilage for use in EMR studies. Rabbit septal cartilage specimens were harvested and standardized to 20 x 8 x 1 mm, and placed in one of three solutions (normal saline, PBS, 10% DMSO in PBS) for four hours in a cold storage room at 4 degrees Celsius. Then, each cartilage specimen was vacuumed and sealed in an anti-frost plastic bag and stored in a freezer at -80 degrees Celsius for 1 to 3 weeks duration. EMR was performed using 2 and 6 volts for 2 minutes application time. Bend angle measurements of the cryopreserved cartilage specimens were compared to bend angles of fresh cartilage which underwent EMR using the same parameters. Results demonstrate that normal saline, phosphate buffered saline (PBS), and PBS with DMSO were effective in cryopreservation, and indicated no significant differences in bend angle measurements when compared to no cryopreservation. Our methodology to cryopreserve cartilage specimens provides a successful approach for use in conducting large-scale EMR studies. © 2010 Copyright SPIE - The International Society for Optical Engineering
CD47 plays a critical role in T-cell recruitment by regulation of LFA-1 and VLA-4 integrin adhesive functions
CD47 plays an important but incompletely understood role in the innate and adaptive immune responses. CD47, also called integrin-associated protein, has been demonstrated to associate in cis with β1 and β3 integrins. Here we test the hypothesis that CD47 regulates adhesive functions of T-cell α4β1 (VLA-4) and αLβ2 (LFA-1) in in vivo and in vitro models of inflammation. Intravital microscopy studies reveal that CD47(−/−) Th1 cells exhibit reduced interactions with wild-type (WT) inflamed cremaster muscle microvessels. Similarly, murine CD47(−/−) Th1 cells, as compared with WT, showed defects in adhesion and transmigration across tumor necrosis factor-α (TNF-α)–activated murine endothelium and in adhesion to immobilized intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion protein 1 (VCAM-1) under flow conditions. Human Jurkat T-cells lacking CD47 also showed reduced adhesion to TNF-α–activated endothelium and ICAM-1 and VCAM-1. In cis interactions between Jurkat T-cell β2 integrins and CD47 were detected by fluorescence lifetime imaging microscopy. Unexpectedly, Jurkat CD47 null cells exhibited a striking defect in β1 and β2 integrin activation in response to Mn(2+) or Mg(2+)/ethylene glycol tetraacetic acid treatment. Our results demonstrate that CD47 associates with β2 integrins and is necessary to induce high-affinity conformations of LFA-1 and VLA-4 that recognize their endothelial cell ligands and support leukocyte adhesion and transendothelial migration
Isolation and retrieval of circulating tumor cells using centrifugal forces.
Presence and frequency of rare circulating tumor cells (CTCs) in bloodstreams of cancer patients are pivotal to early cancer detection and treatment monitoring. Here, we use a spiral microchannel with inherent centrifugal forces for continuous, size-based separation of CTCs from blood (Dean Flow Fractionation (DFF)) which facilitates easy coupling with conventional downstream biological assays. Device performance was optimized using cancer cell lines (> 85% recovery), followed by clinical validation with positive CTCs enumeration in all samples from patients with metastatic lung cancer (n = 20; 5-88 CTCs per mL). The presence of CD133⁺ cells, a phenotypic marker characteristic of stem-like behavior in lung cancer cells was also identified in the isolated subpopulation of CTCs. The spiral biochip identifies and addresses key challenges of the next generation CTCs isolation assay including antibody independent isolation, high sensitivity and throughput (3 mL/hr); and single-step retrieval of viable CTCs
- …
