17,463 research outputs found
Modeling and control of flexible space stations (slew maneuvers)
Large orbiting space structures are expected to experience mechanical vibrations arising from several disturbing forces such as those induced by shuttle takeoff or docking and crew movements. The problem is considered of modeling and control of large space structures subject to these and other disturbing forces. The system consists of a (rigid) massive body, which may play the role of experimental modules located at the center of the space station and flexible configurations, consisting of several beams, forming the space structure. A complete dynamic model of the system was developed using Hamilton's principle. This model consists of radial equations describing the translational motion of the central body, rotational equations describing the attitude motions of the body and several beam equations governing the vibration of the flexible members (platform) including appropriate boundary conditions. In summary, the dynamics of the space structure is governed by a complex system of interconnected partial and ordinary differential equations. Using Lyapunov's approach the asymptotic stability of the space structure is investigated. For asymptotic stability of the rest state (nominal trajectory), feedback controls are suggested. In the investigation, stability of the slewing maneuvers is also considered. Several numerical results are presented for illustration of the impact of coupling and the effectiveness of the stabilizing controls. Some insight is provided into the complexity of modeling, analysis and stabilization of actual space structures
Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator
We demonstrate production of quantum correlated and entangled beams by second
harmonic generation in a nonlinear resonator with two output ports. The output
beams at wavelength 428.5 nm exhibit 0.9 dB of nonclassical intensity
correlations and 0.3 dB of entanglement.Comment: 5 pages, 7 figure
Premelting of Thin Wires
Recent work has raised considerable interest on the nature of thin metallic
wires. We have investigated the melting behavior of thin cylindrical Pb wires
with the axis along a (110) direction, using molecular dynamics and a
well-tested many-body potential. We find that---in analogy with cluster
melting---the melting temperature of a wire with radius is lower
than that of a bulk solid, , by . Surface melting
effects, with formation of a thin skin of highly diffusive atoms at the wire
surface, is observed. The diffusivity is lower where the wire surface has a
flat, local (111) orientation, and higher at (110) and (100) rounded areas. The
possible relevance to recent results on non-rupturing thin necks between an STM
tip and a warm surface is addressed.Comment: 10 pages, 4 postscript figures are appended, RevTeX, SISSA Ref.
131/94/CM/S
A two measure model of dark energy and dark matter
In this work we construct a unified model of dark energy and dark matter.
This is done with the following three elements: a gravitating scalar field, phi
with a non-conventional kinetic term, as in the string theory tachyon; an
arbitrary potential, V(phi); two measures -- a metric measure (sqrt{-g}) and a
non-metric measure (Phi). The model has two interesting features: (i) For
potentials which are unstable and would give rise to tachyonic scalar field,
this model can stabilize the scalar field. (ii) The form of the dark energy and
dark matter that results from this model is fairly insensitive to the exact
form of the scalar field potential.Comment: 8 pages,no figures, revtex, typos corrected to match published
versio
Towards an Achievable Performance for the Loop Nests
Numerous code optimization techniques, including loop nest optimizations,
have been developed over the last four decades. Loop optimization techniques
transform loop nests to improve the performance of the code on a target
architecture, including exposing parallelism. Finding and evaluating an
optimal, semantic-preserving sequence of transformations is a complex problem.
The sequence is guided using heuristics and/or analytical models and there is
no way of knowing how close it gets to optimal performance or if there is any
headroom for improvement. This paper makes two contributions. First, it uses a
comparative analysis of loop optimizations/transformations across multiple
compilers to determine how much headroom may exist for each compiler. And
second, it presents an approach to characterize the loop nests based on their
hardware performance counter values and a Machine Learning approach that
predicts which compiler will generate the fastest code for a loop nest. The
prediction is made for both auto-vectorized, serial compilation and for
auto-parallelization. The results show that the headroom for state-of-the-art
compilers ranges from 1.10x to 1.42x for the serial code and from 1.30x to
1.71x for the auto-parallelized code. These results are based on the Machine
Learning predictions.Comment: Accepted at the 31st International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2018
High energy in-band pumped erbium doped pulse fibre laser
We demonstrate an inband, core-pumped master oscillator power amplifier (MOPA) with a maximum pulse energy of 1.56 mJ at a repetition rate of 1.25 kHz, seeded by an actively Q-switched Erbium/Ytterbium-codoped fiber (EYDF) ring laser, producing 150 ns pulses at 1562.5 nm. To maximize energy extraction whilst minimizing signal saturation effects, a 40 µm Er3+-doped larger mode area (LMA) fiber was used as the gain medium. A 1535 nm single mode fiber laser was used for in-band pumping of the LMA fiber. The output beam quality (M2) was measured to be ~1.6. This is to the best of our knowledge is the highest reported pulse energy for a pulse fiber laser at 1.5 µm with M2~1.6
Computationally Modeling Narratives of Social Group Membership with the Chimeria System
Narratives are often used to form, convey, and reinforce memberships in social groups. Our system, called Chimeria, implements a model of social group membership. Here, we report upon the Chimeria Social Narrative Interface (Chimeria-SN), a component of the Chimeria system, that conveys this model to users through narrative. This component is grounded in a sociolinguistics model of conversational narrative, with some adaptations and extensions in order for it to be applied to an interactive social networking domain. One eventual goal of this work is to be able to extrapolate social group membership by analyzing narratives in social networks; this paper deals with the inverse of that problem, namely, synthesizing narratives from a model of social group membership dynamics
Mapping rail wear regimes and transitions
This paper outlines work carried out to produce maps of rail material wear coefficients taken
from laboratory tests run on twin disc and pin-on-disc machines as well as those derived from
measurements taken in the field. Wear regimes and transitions are identified using the maps
and defined in terms of slip and contact pressure. Wear regimes are related to expected
wheel/rail contact conditions and contact points (rail head/wheel tread and rail gauge/wheel
flange). Surface morphologies are discussed and comparisons are made between field and
laboratory data
- …
