2,789 research outputs found
Functional characterization of 8-oxoguanine DNA glycosylase of Trypanosoma cruzi
The oxidative lesion 8-oxoguanine (8-oxoG) is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1). This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1), the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1-/- (CD138) to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H2O2). Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H2O2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER. © 2012 Furtado et al
Yukawa Textures From Heterotic Stability Walls
A holomorphic vector bundle on a Calabi-Yau threefold, X, with h^{1,1}(X)>1
can have regions of its Kahler cone where it is slope-stable, that is, where
the four-dimensional theory is N=1 supersymmetric, bounded by "walls of
stability". On these walls the bundle becomes poly-stable, decomposing into a
direct sum, and the low energy gauge group is enhanced by at least one
anomalous U(1) gauge factor. In this paper, we show that these additional
symmetries can strongly constrain the superpotential in the stable region,
leading to non-trivial textures of Yukawa interactions and restrictions on
allowed masses for vector-like pairs of matter multiplets. The Yukawa textures
exhibit a hierarchy; large couplings arise on the stability wall and some
suppressed interactions "grow back" off the wall, where the extended U(1)
symmetries are spontaneously broken. A number of explicit examples are
presented involving both one and two stability walls, with different
decompositions of the bundle structure group. A three family standard-like
model with no vector-like pairs is given as an example of a class of SU(4)
bundles that has a naturally heavy third quark/lepton family. Finally, we
present the complete set of Yukawa textures that can arise for any holomorphic
bundle with one stability wall where the structure group breaks into two
factors.Comment: 53 pages, 4 figures and 13 table
Non-L\'evy mobility patterns of Mexican Me'Phaa peasants searching for fuelwood
We measured mobility patterns that describe walking trajectories of
individual Me'Phaa peasants searching and collecting fuelwood in the forests of
"La Monta\~na de Guerrero" in Mexico. These one-day excursions typically follow
a mixed pattern of nearly-constant steps when individuals displace from their
homes towards potential collecting sites and a mixed pattern of steps of
different lengths when actually searching for fallen wood in the forest.
Displacements in the searching phase seem not to be compatible with L\'evy
flights described by power-laws with optimal scaling exponents. These findings
however can be interpreted in the light of deterministic searching on heavily
degraded landscapes where the interaction of the individuals with their scarce
environment produces alternative searching strategies than the expected L\'evy
flights. These results have important implications for future management and
restoration of degraded forests and the improvement of the ecological services
they may provide to their inhabitants.Comment: 15 pages, 4 figures. First version submitted to Human Ecology. The
final publication will be available at http://www.springerlink.co
Migraine aura: retracting particle-like waves in weakly susceptible cortex
Cortical spreading depression (SD) has been suggested to underlie migraine aura. Despite a precise match in speed, the spatio-temporal patterns of SD and aura symptoms on the cortical surface ordinarily differ in aspects of size and shape. We show that this mismatch is reconciled by utilizing that both pattern types bifurcate from an instability point of generic reaction-diffusion models. To classify these spatio-temporal pattern we suggest a susceptibility scale having the value [sigma]=1 at the instability point. We predict that human cortex is only weakly susceptible to SD ([sigma]<1), and support this prediction by directly matching visual aura symptoms with anatomical landmarks using fMRI retinotopic mapping. We discuss the increased dynamical repertoire of cortical tissue close to [sigma]=1, in particular, the resulting implications on migraine pharmacology that is hitherto tested in the regime ([sigma]>>1), and potentially silent aura occurring below a second bifurcation point at [sigma]=0 on the susceptible scale
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
Cytokine preconditioning of engineered cartilage provides protection against interleukin-1 insult
Research reported in this publication was supported in part by the National Institute of Arthritis and Musculoskeletal and Skin Diseases and National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number R01AR60361, R01AR061988, P41EB002520). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. ART was supported by a National Science Foundation Graduate Fellowship
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Neuronal circuitry for pain processing in the dorsal horn
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
Uncovering the effect of low-frequency static magnetic field on tendon-derived cells: from mechanosensing to tenogenesis
Magnetotherapy has been receiving increased attention as an attractive strategy for modulating cell physiology directly at the site of injury, thereby providing the medical community with a safe and non- invasive therapy. Yet, how magnetic eld in uences tendon cells both at the cellular and molecular levels remains unclear. Thus, the in uence of a low-frequency static magnetic eld (2 Hz, 350 mT) on human tendon-derived cells was studied using di erent exposure times (4 and 8 h; short-term studies) and di erent regimens of exposure to an 8h-period of magnetic stimulation (continuous, every 24 h or every 48 h; long-term studies). Herein, 8 h stimulation in short-term studies signi cantly upregulated the expression of tendon-associated genes SCX, COL1A1, TNC and DCN (p < 0.05) and altered intracellular Ca2+ levels (p < 0.05). Additionally, every 24 h regimen of stimulation signi cantly upregulated COL1A1, COL3A1 and TNC at day 14 in comparison to control (p < 0.05), whereas continuous exposure di erentially regulated the release of the immunomodulatory cytokines IL-1β and IL-10 (p < 0.001) but only at day 7 in comparison to controls. Altogether, these results provide new insights on how low-frequency static magnetic eld ne-tune the behaviour of tendon cells according to the magnetic settings used, which we foresee to represent an interesting candidate to guide tendon regeneration.info:eu-repo/semantics/publishedVersio
Can sleep and resting behaviours be used as indicators of welfare in shelter dogs (Canis lupusfamiliaris)?
Previous research on humans and animals suggests that the analysis of sleep patterns
may reliably inform us about welfare status, but little research of this kind has been carried
out for non-human animals in an applied context. This study explored the use of sleep and
resting behaviour as indicators of welfare by describing the activity patterns of dogs (Canis
lupus familiaris) housed in rescue shelters, and comparing their sleep patterns to other
behavioural and cognitive measures of welfare. Sleep and activity patterns were observed
over five non-consecutive days in a population of 15 dogs. Subsequently, the characteristics
of sleep and resting behaviour were described and the impact of activity on patterns of
sleep and resting behaviour analysed. Shelter dogs slept for 2.8% of the day, 14.3% less
than previously reported and experienced less sleep fragmentation at night (32 sleep
bouts). There were no statistically significant relationships between behaviours exhibited
during the day and sleep behaviour. A higher proportion of daytime resting behaviour was
significantly associated with a positive judgement bias, less repetitive behaviour and
increased time spent coded as ‘relaxed’ across days by shelter staff. These results suggest
that, in the context of a busy shelter environment, the ability to rest more during the day
could be a sign of improved welfare. Considering the non-linear relationship between sleep
and welfare in humans, the relationship between sleep and behavioural indicators of welfare,
including judgement bias, in shelter dogs may be more complex than this study could
detect
- …
