11,388 research outputs found

    Service and price competition when customers are naive

    Full text link
    We consider a system of two service providers each with a separate queue. Customers choose one queue to join upon arrival and can switch between queues in real time before entering service to maximize their spot utility, which is a function of price and queue length. We characterize the steady-state distribution for queue lengths, and then investigate a two-stage game in which the two service providers first simultaneously select service rates and then simultaneously charge prices. Our results indicate that neither service provider will have both a faster service and a lower price than its competitor. When price plays a less significant role in customers service selection relative to queue length or when the two service providers incur comparable costs for building capacities, they will not engage in price competition. When price plays a significant role and the capacity costs at the service providers sufficiently differ, they will adopt substitutable competition instruments: the lower cost service provider will build a faster service and the higher cost service provider will charge a lower price. Comparing our results to those in the existing literature, we find that the service providers invest in lower service rates, engage in less intense price competition, and earn higher profits, while customers wait in line longer when they are unable to infer service rates and are naive in service selection than when they can infer service rates to make sophisticated choices. The customers jockeying behavior further lowers the service providers capacity investment and lengthens the customers duration of stay

    Deeply-Learned Part-Aligned Representations for Person Re-Identification

    Full text link
    In this paper, we address the problem of person re-identification, which refers to associating the persons captured from different cameras. We propose a simple yet effective human part-aligned representation for handling the body part misalignment problem. Our approach decomposes the human body into regions (parts) which are discriminative for person matching, accordingly computes the representations over the regions, and aggregates the similarities computed between the corresponding regions of a pair of probe and gallery images as the overall matching score. Our formulation, inspired by attention models, is a deep neural network modeling the three steps together, which is learnt through minimizing the triplet loss function without requiring body part labeling information. Unlike most existing deep learning algorithms that learn a global or spatial partition-based local representation, our approach performs human body partition, and thus is more robust to pose changes and various human spatial distributions in the person bounding box. Our approach shows state-of-the-art results over standard datasets, Market-15011501, CUHK0303, CUHK0101 and VIPeR.Comment: Accepted by ICCV 201
    corecore