851 research outputs found
Microscopic dynamics of charge separation at the aqueous electrochemical interface
We have used molecular simulation and methods of importance sampling to study
the thermodynamics and kinetics of ionic charge separation at a liquid
water-metal interface. We have considered this process using canonical examples
of two different classes of ions: a simple alkali-halide pair, NaI, or
classical ions, and the products of water autoionization, HOOH, or
water ions. We find that for both ion classes, the microscopic mechanism of
charge separation, including water's collective role in the process, is
conserved between the bulk liquid and the electrode interface. Despite this,
the thermodynamic and kinetic details of the process differ between these two
environments in a way that depends on ion type. In the case of the classical
ion pairs, a higher free energy barrier to charge separation and a smaller flux
over that barrier at the interface, results in a rate of dissociation that is
40x slower relative to the bulk. For water ions, a slightly higher free energy
barrier is offset by a higher flux over the barrier from longer lived hydrogen
bonding patters at the interface, resulting in a rate of association that is
similar both at and away from the interface. We find that these differences in
rates and stabilities of charge separation are due to the altered ability of
water to solvate and reorganize in the vicinity of the metal interface.Comment: 6 pages, 3 figures + S
Effect of annealing on the depth profile of hole concentration in (Ga,Mn)As
The effect of annealing at 250 C on the carrier depth profile, Mn
distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As
layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low
temperatures, is studied by a variety of analytical methods. The vertical
gradient in hole concentration, revealed by electrochemical capacitance-voltage
profiling, is shown to play a key role in the understanding of conductivity and
magnetization data. The gradient, basically already present in as-grown
samples, is strongly influenced by post-growth annealing. From secondary ion
mass spectroscopy it can be concluded that, at least in thick layers, the
change in carrier depth profile and thus in conductivity is not primarily due
to out-diffusion of Mn interstitials during annealing. Two alternative possible
models are discussed.Comment: 8 pages, 8 figures, to appear in Phys. Rev.
Electronic and magnetic properties of GaMnAs: Annealing effects
The effect of short-time and long-time annealing at 250C on the conductivity,
hole density, and Curie temperature of GaMnAs single layers and GaMnAs/InGaMnAs
heterostructures is studied by in-situ conductivity measurements as well as
Raman and SQUID measurements before and after annealing. Whereas the
conductivity monotonously increases with increasing annealing time, the hole
density and the Curie temperature show a saturation after annealing for 30
minutes. The incorporation of thin InGaMnAs layers drastically enhances the
Curie temperature of the GaMnAs layers.Comment: 4 pages, 6 figures, submitted to Physica
Water exchange at a hydrated platinum electrode is rare and collective
We use molecular dynamics simulations to study the exchange kinetics of water
molecules at a model metal electrode surface -- exchange between water
molecules in the bulk liquid and water molecules bound to the metal. This
process is a rare event, with a mean residence time of a bound water of about
40 ns for the model we consider. With analysis borrowed from the techniques of
rare-event sampling, we show how this exchange or desorption is controlled by
(1) reorganization of the hydrogen bond network within the adlayer of bound
water molecules, and by (2) interfacial density fluctuations of the bulk liquid
adjacent to the adlayer. We define collective coordinates that describe the
desorption mechanism. Spatial and temporal correlations associated with a
single event extend over nanometers and tens of picoseconds.Comment: 10 pages, 9 figure
Enhancement of the Curie temperature in GaMnAs/InGaMnAs superlattices
We report on an enhancement of the Curie temperature in GaMnAs/InGaMnAs
superlattices grown by low-temperature molecular beam epitaxy, which is due to
thin InGaMnAs or InGaAs films embedded into the GaMnAs layers. The pronounced
increase of the Curie temperature is strongly correlated to the In
concentration in the embedded layers. Curie temperatures up to 110 K are
observed in such structures compared to 60 K in GaMnAs single layers grown
under the same conditions. A further increase in T up to 130 K can be
achieved using post-growth annealing at temperatures near the growth
temperature. Pronounced thickness fringes in the high resolution X-ray
diffraction spectra indicate good crystalline quality and sharp interfaces in
the structures.Comment: 4 pages, 4 figures, submitted to Appl. Phys. Let
- …
