2,235 research outputs found
Measurement of the properties of inelastic p-p events with the ATLAS detector
New measurements are presented from proton-proton collisions at sqrt(s) = 7
TeV recorded with the ATLAS detector at the LHC. Minimum bias distributions are
measured in distinct phase-space regions and compared with Monte Carlo model
predictions. Activity in the underlying event is measured with respect to the
track with the highest tranverse momentum in the event. Angular correlations
between charged particles are studied to provide model-sensitive measurements.Comment: 3 pages, HCP 201
ATLAS SCT Commissioning
The Barrel and End-Cap SCT detectors are installed in the ATLAS cavern. This paper will focus on the assembly, installation and first tests of the SCT in-situ. The thermal, electrical and optical services were tested and the results will be reviewed. Problems with the cooling have led to a modification for the heaters on the cooling return lines. The first tests of the SCT in-situ will be described using the calibration scans. The performance of the SCT, in particular the fraction of working channels and the noise performance, is well within the ATLAS specification
Wave reflection, assessed by use of the ARCSolver Algorithm for pulse wave separation, is reduced under acute µg conditions in parabolic flight
Weightlessness during long-term space flight over
6-12 months leads to complex individual
cardiovascular adaptation. The initial central
blood volume expansion followed by a loss of
plasma volume is accompanied by changes in
vascular mechanoreceptor loads and
responsive-ness, altered autonomic reflex control
of heart rate and blood pressure, and hormonal
changes in the long run. Hence, function and
structure of the heart and blood vessels may
change. Hemodynamic data obtained during
short- and long-term space flight may indicate
that the adaptation process resembles ageing of
the cardiovascular system characterized by
decreased diastolic blood pressure, increased
central sympathetic nerve traffic and increased
arterial pulse wave velocity. Experiments during
parabolic flights in supine position suggest, that
stroke volume does not change during transitions
between µ-g and 1-g.
We tested a novel method of pulse wave
separation based on simple oscillometric brachial
cuff waveform reading to investigate pulse wave
reflection during acute weightlessness in healthy
subjects. We hypothesized that the wave
reflection magnitude (RM) remains unaltered
during parabolic flights in supine position
Magnetic Resonance Investigation of the Human Brain after 6 Days of Acclimatization to 4554 m - Preliminary Results of the EFA study -
Objective: Hypoxia is the main trigger of acute mountain sickness (AMS). However it is not the cause of the actual symptoms of AMS. The biochemical mechanisms underlying the AMS development are not well understood what leads to a high uncertainty regarding the likeliness of AMS development in astronauts living in future moderate hypobaric hypoxic habitats on Mars or moon. The hypothesis of the EFA study (Edema Formation in the High Alps) was that hypoxia triggered inflammatory processes lead to a breakdown of the capillary barrier and edema formation in vulnerable tissues as the brain.
Methods: 11 subjects (5 women) ascended within 48 h from 1154 m to the Capanna Regina Margherita in 4554 m. Brain magnetic resonance imaging (MRI) was performed at sea level before the altitude exposure and within the first 12 h after descent. MRI included amongst others an anatomical 3D volumetric T1-weighted MPRAGE (magnetization-prepared rapid acquisition of gradient echo) scan, a susceptibility weighted gradient echo sequence, T2 weighted spin echo sequences and a diffusion weighted sequence to gain an apparent diffusion coefficient mapping and a trace image to test for volume changes of the different brain compartments, for hypoxic triggered brain edema and for micro-bleedings. Baseline measurements were performed at the DLR MRI lab in Cologne (77 m) whereas post line measurements were performed at the MRI department of the German Air Force in Fürstenfeldbruck (517 m) by applying identical sequences at both centers.
Results: Neither mean global intracranial volume (p=7.97) nor mean volumes of the particular brain compartments grey (p=0.279) and white matter (p=0.758) or cerebrospinal fluid (p=0.586) showed any significant differences after the altitude exposure with respect to baseline. However 6 days of altitude exposure lead to the exacerbation of pre-existing white matter lesions in one subject and the occurrence of a local hypoxic edema in the splenium of a second subjects in the sense of a reversible splenial lesion syndrome (RESLES) (1, 2).
Conclusion: Contradictory to the current literature (3) we were not able to show a general volume gain of the intracranial compartments after high altitude adaptation. However our findings of white matter lesions (4) and RESLES in two subjects not presenting any symptoms of a high altitude cerebral edema (HACE) have, as far as we know, not been described before (5)
Epidemiology of febrile diseases in the emergency department of a Caribbean Island: The Curaçao experience
Objective: The aetiology of febrile diseases in tropical countries often remains poorly characterized. We aim to describe the aetiology and outcome of febrile illnesses at the Emergency Department (ED) in Curaçao. Methods: From April 2008 - April 2009, all adult febrile patients (T > 38.5 oC) at the ED of the St Elisabeth Hospital, Curaçao, Netherlands Antilles, were included. Clinical data were recorded, routine laboratory measurements and blood cultures were taken. Final diagnoses were made at discharge by an independent physician and in retrospect by the main investigator. Results: Four hundred and three patients were included: 223 patients (55.6%) were hospitalized, 32 patients (7.9%) died and 18 patients (4.5%) were admitted to the Intensive Care Unit. In 129 febrile patients (32.0%), infection was proven; 84.4% of patients had bacterial (29.0% urinary tract infection, 23.2% pneumonia infection), 5.6% viral and 10.0% parasitic or fungal infections. Twenty-one patients (5.2%) were discharged with a non-infectious diagnosis and 172 patients (42.7%) without a clear diagnosis. Conclusion: A high mortality rate of 7.9% was observed. We found a high prevalence of bacterial infections, with pneumonia and urinary tract infections as the most common causes of fever. One in 20 patients did not have an infectious disease
Molecular genetic analysis of Giardia intestinalis isolates at the glutamate dehydrogenase locus
Samples of DNA from a panel of Giardia isolated from humans and animals in Europe and shown previously to consist of 2 major genotypes–‘Polish’ and ‘Belgian’–have been compared with human-derived Australian isolates chosen to represent distinct genotypes (genetic groups I–IV) defined previously by allozymic analysis. Homologous 0·52 kilobase (kb) segments of 2 trophozoite surface protein genes (tsa417 and tsp11, both present in isolates belonging to genetic groups I and II) and a 1·2 kb segment of the glutamate dehydrogenase (gdh) gene were amplified by the polymerase chain reaction (PCR) and examined for restriction fragment length polymorphisms (RFLPs). Of 21 ‘Polish’ isolates that were tested, all yielded tsa417-like and tsp11-like PCR products that are characteristic of genetic groups I or II (15 and 6 isolates respectively) in a distinct assemblage of G. intestinalis from Australia (Assemblage A). Conversely, most of the 19 ‘Belgian’ isolates resembled a second assemblage of genotypes defined in Australia (Assemblage B) which contains genetic groups III and IV. RFLP analysis of gdh amplification products showed also that ‘Polish’ isolates-were equivalent to Australian Assemblage A isolates (this analysis does not distinguish between genetic groups I and II) and that ‘Belgian’ isolates were equivalent to Australian Assemblage B isolates. Comparison of nucleotide sequences determined for a 690 base-pair portion of the gdh PCR products revealed ≥ 99·0% identity between group I and group II (Assemblage A/‘Polish’) genotypes, 88·3–89·7% identity between Assemblage A and Assemblage B genotypes, and ≥ 98·4% identity between various Assemblage B/‘Belgian’ genotypes. The results confirm that the G. duodenalis isolates examined in this study (inclusive of G. intestinalis from humans) can be divided into 2 major genetic clusters: Assemblage A (= ‘Polish’ genotype) containing allozymically defined groups I and II, and Assemblage B (= ‘Belgian’ genotype) containing allozymically defined groups III and IV and other related genotypes
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector
The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
