2,082 research outputs found

    Longitudinal broadening of near side jets due to parton cascade

    Full text link
    Longitudinal broadening along Δη\Delta\eta direction on near side in two-dimensional (Δϕ×Δη\Delta\phi \times \Delta\eta) di-hadron correlation distribution has been studied for central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV, within a dynamical multi-phase transport model. It was found that the longitudinal broadening is generated by a longitudinal flow induced by strong parton cascade in central Au+Au collisions, in comparison with p+p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The longitudinal broadening may shed light on the information about strongly interacting partonic matter at RHIC.Comment: 5 pages, 4 figures; accepted by Eur. Phys. J.

    CP violation in the decay mode BπγγB\to \pi \gamma \gamma

    Full text link
    Within the framework of Standard Model, the exclusive decay mode BπγγB\to \pi \gamma \gamma is studied. Although the usual short distance contribution is small compared to the similar BKγγB\to K\gamma\gamma mode, the process offers the possibility of studying the CP violation, a feature absent in the BKB \to K counterpart.Comment: 11 page latex file including 2 ps figures. Typos corrected, minor changes. To appear in PR

    Affleck-Dine baryogenesis in inflating curvaton scenario with O(1010210-10^2TeV) mass moduli curvaton

    Full text link
    We study the Affleck-Dine (AD) baryogenesis in the inflating curvaton scenario, when the curvaton is a moduli field with O(1010210-10^2TeV) mass. A moduli field with such mass is known to be free from the Polonyi problem, and furthermore its decay products can explain the present cold dark matter abundance. In our scenario, it further explains the primordial curvature perturbation and the present baryon density all together. The current observational bound on the baryon isocurvature perturbation, which severely constrains the AD baryogenesis with the original oscillating moduli curvaton scenario, is shown to put practically negligible constraint if we replace the oscillating curvaton with the inflating curvaton.Comment: 1+21pages v2: minor correction v3: included short reviews, added refs, fixed typo

    Very strong intrinsic supercurrent carrying ability and vortex avalanches in (Ba,K)Fe2As2 superconducting single crystals

    Get PDF
    We report that single crystals of (Ba,K)Fe2As2 with Tc = 32 K have a pinning potential, U0, as high as 10^4 K, with U0 showing very little field depend-ence. In addition, the (Ba,K)Fe2As2 single crystals become isotropic at low temperatures and high magnetic fields, resulting in a very rigid vortex lattice, even in fields very close to Hc2. The rigid vortices in the two dimensional (Ba,K)Fe2As2 distinguish this compound from 2D high Tc cuprate superconductors with 2D vortices, and make it being capable of cearrying very high critical current.Flux jumping due to high Jc was also observed in large samples at low temperatures.Comment: 4 pages, 7 figures. submitte

    Predictions for BKγγB \to K \gamma \gamma decays

    Full text link
    We present a phenomenological study of the rare double radiative decay BKγγB\to K \gamma\gamma in the Standard Model (SM) and beyond. Using the operator product expansion (OPE) technique, we estimate the short-distance (SD) contribution to the decay amplitude in a region of the phase space which is around the point where all decay products have energy mb/3\sim m_b/3 in the rest frame of the BB-meson. At lowest order in 1/Q, where QQ is of order mbm_b, the BKγγB\to K \gamma\gamma matrix element is then expressed in terms of the usual BKB\to K form factors known from semileptonic rare decays. The integrated SD branching ratio in the SM in the OPE region turns out to be ΔB(BKγγ)SMOPE1×109\Delta {\cal{B}}(B \to K \gamma \gamma)_{SM}^{OPE} \simeq 1 \times 10^{-9}. We work out the di-photon invariant mass distribution with and without the resonant background through BK{ηc,χc0}KγγB\to K \{\eta_c,\chi_{c0}\}\to K\gamma \gamma. In the SM, the resonance contribution is dominant in the region of phase space where the OPE is valid. The present experimental upper limit on Bsτ+τB_s \to \tau^+ \tau^- decays, which constrains the scalar/pseudoscalar Four-Fermi operators with τ+τ\tau^+ \tau^-, leaves considerable room for new physics in the one-particle-irreducible contribution to BKγγB\to K \gamma \gamma decays. In this case, we find that the SD BKγγB\to K \gamma \gamma branching ratio can be enhanced by one order of magnitude with respect to its SM value and the SD contribution can lie outside of the resonance peaks.Comment: 17 pages, 4 figures; Note added on Schouten identity and 2 references added; v4: typos in Eqs (8), (44) and erroneous statement on mixing before Eq (44) fixed. All results and conclusions unchange

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    Di-hadron azimuthal correlation and Mach-like cone structure in parton/hadron transport model

    Full text link
    In the framework of a multi-phase transport model (AMPT) with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles have been studied by the mixing-event technique. The momentum ranges of these particles are 3<pTtrig<63< p^{trig}_T< 6 GeV/cc and 0.15<pTassoc<30.15< p_{T}^{assoc} < 3 GeV/cc (soft), or 2.5<pTtrig<2.5<p^{trig}_T< 4 GeV/cc and 1<pTassoc<2.51< p_{T}^{assoc} < 2.5 GeV/cc (hard) in Au + Au collisions at sNN\sqrt{s_{NN}} = 200 GeV. A Mach-like structure has been observed in correlation functions for central collisions. By comparing scenarios with and without parton cascade and hadronic rescattering, we show that both partonic and hadronic dynamical mechanisms contribute to the Mach-like structure of the associated particle azimuthal correlations. The contribution of hadronic dynamical process can not be ignored in the emergence of Mach-like correlations of the soft scattered associated hadrons. However, hadronic rescattering alone cannot reproduce experimental amplitude of Mach-like cone on away-side, and the parton cascade process is essential to describe experimental amplitude of Mach-like cone on away-side. In addition, both the associated multiplicity and the sum of pTp_{T} decrease, whileas the increases, with the impact parameter in the AMPT model including partonic dynamics from string melting scenario.Comment: 9 pages, 5 figures; Physics Letters B 641, 362-367 (2006

    System-size scan of dihadron azimuthal correlations in ultra-relativistic heavy ion collisions

    Full text link
    System-size dependence of dihadron azimuthal correlations in ultra-relativistic heavy ion collision is simulated by a multi-phase transport model. The structure of correlation functions and yields of associated particles show clear participant path-length dependences in collision systems with a partonic phase. The splitting parameter and root-mean-square width of away-side correlation functions increase with collision system size from 14^{14}N+14^{14}N to 197^{197}Au+197^{197}Au collisions. The double-peak structure of away-side correlation functions can only be formed in sufficient "large" collision systems under partonic phase. The contrast between the results with partonic phase and with hadron gas could suggest some hints to study onset of deconfinment.Comment: 8 pages, 4 figures, 1 table; Nucl. Phys. A (accepted

    Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation

    Get PDF
    We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.Comment: 7 pages, 4 figure
    corecore