122,651 research outputs found
In situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) at temperatures below 150 °C
We report an in situ transmission electron microscopy study on the epitaxial growth of CoSi2 on Si(111) from a 10-nm-thick amorphous mixture of Co and Si in the ratio 1:2 which was formed by codeposition of Co and Si near room temperature. Nuclei of CoSi2 are observed in the as-deposited film. These nuclei are epitaxial and extend through the whole film thickness. Upon annealing, these columnar epitaxial CoSi2 grains grow laterally at temperatures as low as 50 °C. The kinetics of this lateral epitaxial growth was studied at temperatures between 50 and 150 °C. The activation energy of the growth process is 0.8±0.1 eV
Tidal Barrier and the Asymptotic Mass of Proto Gas-Giant Planets
Extrasolar planets found with radial velocity surveys have masses ranging
from several Earth to several Jupiter masses. While mass accretion onto
protoplanetary cores in weak-line T-Tauri disks may eventually be quenched by a
global depletion of gas, such a mechanism is unlikely to have stalled the
growth of some known planetary systems which contain relatively low-mass and
close-in planets along with more massive and longer period companions. Here, we
suggest a potential solution for this conundrum. In general, supersonic infall
of surrounding gas onto a protoplanet is only possible interior to both of its
Bondi and Roche radii. At a critical mass, a protoplanet's Bondi and Roche
radii are equal to the disk thickness. Above this mass, the protoplanets' tidal
perturbation induces the formation of a gap. Although the disk gas may continue
to diffuse into the gap, the azimuthal flux across the protoplanets' Roche lobe
is quenched. Using two different schemes, we present the results of numerical
simulations and analysis to show that the accretion rate increases rapidly with
the ratio of the protoplanet's Roche to Bondi radii or equivalently to the disk
thickness. In regions with low geometric aspect ratios, gas accretion is
quenched with relatively low protoplanetary masses. This effect is important
for determining the gas-giant planets' mass function, the distribution of their
masses within multiple planet systems around solar type stars, and for
suppressing the emergence of gas-giants around low mass stars
Partonic Effects in Heavy Ion Collisions at RHIC
Effects of partonic interactions in heavy ion collisions at RHIC are studied
in a multiphase transport model (AMPT) that includes both initial partonic and
final hadronic interactions.It is found that a large parton scattering cross
section is needed to understand the measured elliptic flow of pions and
two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest,
Hungary, March 3-7, 200
Doppler Amplification of Motion of a Trapped Three-Level Ion
The system of a trapped ion translationally excited by a blue-detuned
near-resonant laser, sometimes described as an instance of a phonon laser, has
recently received attention as interesting in its own right and for its
application to non-destructive readout of internal states of non-fluorescing
ions. Previous theoretical work has been limited to cases of two-level ions.
Here, we perform simulations to study the dynamics of a phonon laser involving
the -type ^{138}\mbox{Ba}^{+} ion, in which coherent population
trapping effects lead to different behavior than in the previously studied
cases. We also explore optimization of the laser parameters to maximize
amplification gain and signal-to-noise ratio for internal state readout
Atmospheric Dynamics of Short-period Extra Solar Gas Giant Planets I: Dependence of Night-Side Temperature on Opacity
More than two dozen short-period Jupiter-mass gas giant planets have been
discovered around nearby solar-type stars in recent years, several of which
undergo transits, making them ideal for the detection and characterization of
their atmospheres. Here we adopt a three-dimensional radiative hydrodynamical
numerical scheme to simulate atmospheric circulation on close-in gas giant
planets. In contrast to the conventional GCM and shallow water algorithms, this
method does not assume quasi hydrostatic equilibrium and it approximates
radiation transfer from optically thin to thick regions with flux-limited
diffusion. In the first paper of this series, we consider
synchronously-spinning gas giants. We show that a full three-dimensional
treatment, coupled with rotationally modified flows and an accurate treatment
of radiation, yields a clear temperature transition at the terminator. Based on
a series of numerical simulations with varying opacities, we show that the
night-side temperature is a strong indicator of the opacity of the planetary
atmosphere. Planetary atmospheres that maintain large, interstellar opacities
will exhibit large day-night temperature differences, while planets with
reduced atmospheric opacities due to extensive grain growth and sedimentation
will exhibit much more uniform temperatures throughout their photosphere's. In
addition to numerical results, we present a four-zone analytic approximation to
explain this dependence.Comment: 35 Pages, 13 Figure
Axisymmetric Dynamic Response of Spherical and Cylindrical Shells
Axisymmetric dynamic response of spherical and cylindrical shell
Two-dimensional turbulence models
Two-dimensional turbulence models are compared with experimental measurements made using an array of instrumented towers. The spatial correlation coefficient, the two-point spectrum or cross spectrum, and the coherence function are discussed. The prediction techniques in general agree reasonably well with the experimental results. Measurements of the integral length scale however, do not correlate well with the prediction model
Modeling for Active Control of Combustion and Thermally Driven Oscillations
Organized oscillations excited and sustained by high densities of energy release in combustion chambers have long caused serious problems in development of propulsion systems. The amplitudes often become sufficiently large to cause unacceptable structural vibrations. Because the oscillations are self-excited, they reach limiting amplitudes (limit cycles) only because of the action of nonlinear processes. Traditionally, satisfactory behavior
has been achieved through a combination of trial-and-error
design and testing, with control always involving passive means: geometrical modifications, changes of propellant composition, or devices to enhance dissipation of acoustic energy. Active control has been applied only to small-scale laboratory devices, but the limited success suggests the possibility of serious applications to full-scale propulsion systems. Realization of that potential rests on further experimental work, combined with deeper understanding of the mechanisms causing the oscillations and of the physical behavior of the systems. Effective design of active control systems will require faithful modeling of the relevant processes over broad frequency ranges covering the spectra of natural modes. This paper will cover the general character of the linear and nonlinear behavior of combustion systems, with special attention to acoustics and the mechanisms of excitation.
The discussion is intended to supplement the paper by Doyle et al. concerned primarily with controls issues and the observed behavior of simple laboratory devices
- …
