99 research outputs found

    Mamba4Rec: Towards Efficient Sequential Recommendation with Selective State Space Models

    Full text link
    Sequential recommendation aims to estimate the dynamic user preferences and sequential dependencies among historical user behaviors. Although Transformer-based models have proven to be effective for sequential recommendation, they suffer from the inference inefficiency problem stemming from the quadratic computational complexity of attention operators, especially for long behavior sequences. Inspired by the recent success of state space models (SSMs), we propose Mamba4Rec, which is the first work to explore the potential of selective SSMs for efficient sequential recommendation. Built upon the basic Mamba block which is a selective SSM with an efficient hardware-aware parallel algorithm, we design a series of sequential modeling techniques to further promote model performance while maintaining inference efficiency. Through experiments on public datasets, we demonstrate how Mamba4Rec effectively tackles the effectiveness-efficiency dilemma, outperforming both RNN- and attention-based baselines in terms of both effectiveness and efficiency. The code is available at https://github.com/chengkai-liu/Mamba4Rec

    Fractional Skipping: Towards Finer-Grained Dynamic CNN Inference

    Full text link
    While increasingly deep networks are still in general desired for achieving state-of-the-art performance, for many specific inputs a simpler network might already suffice. Existing works exploited this observation by learning to skip convolutional layers in an input-dependent manner. However, we argue their binary decision scheme, i.e., either fully executing or completely bypassing one layer for a specific input, can be enhanced by introducing finer-grained, "softer" decisions. We therefore propose a Dynamic Fractional Skipping (DFS) framework. The core idea of DFS is to hypothesize layer-wise quantization (to different bitwidths) as intermediate "soft" choices to be made between fully utilizing and skipping a layer. For each input, DFS dynamically assigns a bitwidth to both weights and activations of each layer, where fully executing and skipping could be viewed as two "extremes" (i.e., full bitwidth and zero bitwidth). In this way, DFS can "fractionally" exploit a layer's expressive power during input-adaptive inference, enabling finer-grained accuracy-computational cost trade-offs. It presents a unified view to link input-adaptive layer skipping and input-adaptive hybrid quantization. Extensive experimental results demonstrate the superior tradeoff between computational cost and model expressive power (accuracy) achieved by DFS. More visualizations also indicate a smooth and consistent transition in the DFS behaviors, especially the learned choices between layer skipping and different quantizations when the total computational budgets vary, validating our hypothesis that layer quantization could be viewed as intermediate variants of layer skipping. Our source code and supplementary material are available at \link{https://github.com/Torment123/DFS}

    ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation

    Full text link
    Large language models have been flourishing in the natural language processing (NLP) domain, and their potential for recommendation has been paid much attention to. Despite the intelligence shown by the recommendation-oriented finetuned models, LLMs struggle to fully understand the user behavior patterns due to their innate weakness in interpreting numerical features and the overhead for long context, where the temporal relations among user behaviors, subtle quantitative signals among different ratings, and various side features of items are not well explored. Existing works only fine-tune a sole LLM on given text data without introducing that important information to it, leaving these problems unsolved. In this paper, we propose ELCoRec to Enhance Language understanding with CoPropagation of numerical and categorical features for Recommendation. Concretely, we propose to inject the preference understanding capability into LLM via a GAT expert model where the user preference is better encoded by parallelly propagating the temporal relations, and rating signals as well as various side information of historical items. The parallel propagation mechanism could stabilize heterogeneous features and offer an informative user preference encoding, which is then injected into the language models via soft prompting at the cost of a single token embedding. To further obtain the user's recent interests, we proposed a novel Recent interaction Augmented Prompt (RAP) template. Experiment results over three datasets against strong baselines validate the effectiveness of ELCoRec. The code is available at https://anonymous.4open.science/r/CIKM_Code_Repo-E6F5/README.md

    M-scan: A Multi-Scenario Causal-driven Adaptive Network for Recommendation

    Full text link
    We primarily focus on the field of multi-scenario recommendation, which poses a significant challenge in effectively leveraging data from different scenarios to enhance predictions in scenarios with limited data. Current mainstream efforts mainly center around innovative model network architectures, with the aim of enabling the network to implicitly acquire knowledge from diverse scenarios. However, the uncertainty of implicit learning in networks arises from the absence of explicit modeling, leading to not only difficulty in training but also incomplete user representation and suboptimal performance. Furthermore, through causal graph analysis, we have discovered that the scenario itself directly influences click behavior, yet existing approaches directly incorporate data from other scenarios during the training of the current scenario, leading to prediction biases when they directly utilize click behaviors from other scenarios to train models. To address these problems, we propose the Multi-Scenario Causal-driven Adaptive Network M-scan). This model incorporates a Scenario-Aware Co-Attention mechanism that explicitly extracts user interests from other scenarios that align with the current scenario. Additionally, it employs a Scenario Bias Eliminator module utilizing causal counterfactual inference to mitigate biases introduced by data from other scenarios. Extensive experiments on two public datasets demonstrate the efficacy of our M-scan compared to the existing baseline models.Comment: This paper has been accepted by WWW'2

    Large Language Models Make Sample-Efficient Recommender Systems

    Full text link
    Large language models (LLMs) have achieved remarkable progress in the field of natural language processing (NLP), demonstrating remarkable abilities in producing text that resembles human language for various tasks. This opens up new opportunities for employing them in recommender systems (RSs). In this paper, we specifically examine the sample efficiency of LLM-enhanced recommender systems, which pertains to the model's capacity to attain superior performance with a limited quantity of training data. Conventional recommendation models (CRMs) often need a large amount of training data because of the sparsity of features and interactions. Hence, we propose and verify our core viewpoint: Large Language Models Make Sample-Efficient Recommender Systems. We propose a simple yet effective framework (i.e., Laser) to validate the viewpoint from two aspects: (1) LLMs themselves are sample-efficient recommenders; and (2) LLMs, as feature generators and encoders, make CRMs more sample-efficient. Extensive experiments on two public datasets show that Laser requires only a small fraction of training samples to match or even surpass CRMs that are trained on the entire training set, demonstrating superior sample efficiency.Comment: Accepted by Frontier of Computer Scienc

    Towards Efficient and Effective Unlearning of Large Language Models for Recommendation

    Full text link
    The significant advancements in large language models (LLMs) give rise to a promising research direction, i.e., leveraging LLMs as recommenders (LLMRec). The efficacy of LLMRec arises from the open-world knowledge and reasoning capabilities inherent in LLMs. LLMRec acquires the recommendation capabilities through instruction tuning based on user interaction data. However, in order to protect user privacy and optimize utility, it is also crucial for LLMRec to intentionally forget specific user data, which is generally referred to as recommendation unlearning. In the era of LLMs, recommendation unlearning poses new challenges for LLMRec in terms of \textit{inefficiency} and \textit{ineffectiveness}. Existing unlearning methods require updating billions of parameters in LLMRec, which is costly and time-consuming. Besides, they always impact the model utility during the unlearning process. To this end, we propose \textbf{E2URec}, the first \underline{E}fficient and \underline{E}ffective \underline{U}nlearning method for LLM\underline{Rec}. Our proposed E2URec enhances the unlearning efficiency by updating only a few additional LoRA parameters, and improves the unlearning effectiveness by employing a teacher-student framework, where we maintain multiple teacher networks to guide the unlearning process. Extensive experiments show that E2URec outperforms state-of-the-art baselines on two real-world datasets. Specifically, E2URec can efficiently forget specific data without affecting recommendation performance. The source code is at \url{https://github.com/justarter/E2URec}.Comment: Accepted by Frontier of Computer Scienc

    Behavior-Dependent Linear Recurrent Units for Efficient Sequential Recommendation

    Full text link
    Sequential recommender systems aims to predict the users\u27 next interaction through user behavior modeling with various operators like RNNs and attentions. However, existing models generally fail to achieve the three golden principles for sequential recommendation simultaneously, i.e., training efficiency, low-cost inference, and strong performance. To this end, we propose RecBLR, an Efficient Sequential Recommendation Model based on Behavior-Dependent Linear Recurrent Units to accomplish the impossible triangle of the three principles. By incorporating gating mechanisms and behavior-dependent designs into linear recurrent units, our model significantly enhances user behavior modeling and recommendation performance. Furthermore, we unlock the parallelizable training as well as inference efficiency for our model by designing a hardware-aware scanning acceleration algorithm with a customized CUDA kernel. Extensive experiments on real-world datasets with varying lengths of user behavior sequences demonstrate RecBLR\u27s remarkable effectiveness in simultaneously achieving all three golden principles - strong recommendation performance, training efficiency, and low-cost inference, while exhibiting excellent scalability to datasets with long user interaction histories.Accepted to CIKM 202

    Dual Dynamic Inference: Enabling More Efficient, Adaptive and Controllable Deep Inference

    Full text link
    State-of-the-art convolutional neural networks (CNNs) yield record-breaking predictive performance, yet at the cost of high-energy-consumption inference, that prohibits their widely deployments in resource-constrained Internet of Things (IoT) applications. We propose a dual dynamic inference (DDI) framework that highlights the following aspects: 1) we integrate both input-dependent and resource-dependent dynamic inference mechanisms under a unified framework in order to fit the varying IoT resource requirements in practice. DDI is able to both constantly suppress unnecessary costs for easy samples, and to halt inference for all samples to meet hard resource constraints enforced; 2) we propose a flexible multi-grained learning to skip (MGL2S) approach for input-dependent inference which allows simultaneous layer-wise and channel-wise skipping; 3) we extend DDI to complex CNN backbones such as DenseNet and show that DDI can be applied towards optimizing any specific resource goals including inference latency or energy cost. Extensive experiments demonstrate the superior inference accuracy-resource trade-off achieved by DDI, as well as the flexibility to control such trade-offs compared to existing peer methods. Specifically, DDI can achieve up to 4 times computational savings with the same or even higher accuracy as compared to existing competitive baselines

    ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

    Full text link
    With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on a real-world public dataset (i.e., MovieLens-1M) to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension.Comment: Under Revie

    DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation

    Full text link
    Recommender systems play important roles in various applications such as e-commerce, social media, etc. Conventional recommendation methods usually model the collaborative signals within the tabular representation space. Despite the personalization modeling and the efficiency, the latent semantic dependencies are omitted. Methods that introduce semantics into recommendation then emerge, injecting knowledge from the semantic representation space where the general language understanding are compressed. However, existing semantic-enhanced recommendation methods focus on aligning the two spaces, during which the representations of the two spaces tend to get close while the unique patterns are discarded and not well explored. In this paper, we propose DisCo to Disentangle the unique patterns from the two representation spaces and Collaborate the two spaces for recommendation enhancement, where both the specificity and the consistency of the two spaces are captured. Concretely, we propose 1) a dual-side attentive network to capture the intra-domain patterns and the inter-domain patterns, 2) a sufficiency constraint to preserve the task-relevant information of each representation space and filter out the noise, and 3) a disentanglement constraint to avoid the model from discarding the unique information. These modules strike a balance between disentanglement and collaboration of the two representation spaces to produce informative pattern vectors, which could serve as extra features and be appended to arbitrary recommendation backbones for enhancement. Experiment results validate the superiority of our method against different models and the compatibility of DisCo over different backbones. Various ablation studies and efficiency analysis are also conducted to justify each model component
    corecore