1,138 research outputs found
Detailed balance condition and ultraviolet stability of scalar field in Horava-Lifshitz gravity
Detailed balance and projectability conditions are two main assumptions when
Horava recently formulated his theory of quantum gravity - the Horava-Lifshitz
(HL) theory. While the latter represents an important ingredient, the former
often believed needs to be abandoned, in order to obtain an ultraviolet stable
scalar field, among other things. In this paper, because of several attractive
features of this condition, we revisit it, and show that the scalar field can
be stabilized, if the detailed balance condition is allowed to be softly
broken. Although this is done explicitly in the non-relativistic general
covariant setup of Horava-Melby-Thompson with an arbitrary coupling constant
, generalized lately by da Silva, it is also true in other versions of
the HL theory. With the detailed balance condition softly breaking, the number
of independent coupling constants can be still significantly reduced. It is
remarkable to note that, unlike other setups, in this da Silva generalization,
there exists a master equation for the linear perturbations of the scalar field
in the flat Friedmann-Robertson-Walker background.Comment: Some typos are corrected. To appear in JCA
On the origin of the A and B electronic Raman scattering peaks in the superconducting state of YBaCuO
The electronic Raman scattering has been investigated in optimally oxygen
doped YBaCuO single crystals as well as in crystals
with non-magnetic, Zn, and magnetic, Ni, impurities. We found that the
intensity of the A peak is impurity independent and their energy to
ratio is almost constant (). Moreover, the
signal at the B channel is completely smeared out when non-magnetic Zn
impurities are present. These results are qualitatively interpreted in terms of
the Zeyher and Greco's theory that relates the electronic Raman scattering in
the A and B channels to \textit{d}-CDW and superconducting order
parameters fluctuations, respectively.Comment: Submited to Phys. Rev. Let
Spin Transport in Two Dimensional Hopping Systems
A two dimensional hopping system with Rashba spin-orbit interaction is
considered. Our main interest is concerned with the evolution of the spin
degree of freedom of the electrons. We derive the rate equations governing the
evolution of the charge density and spin polarization of this system in the
Markovian limit in one-particle approximation. If only two-site hopping events
are taken into account, the evolution of the charge density and of the spin
polarization is found to be decoupled. A critical electric field is found,
above which oscillations are superimposed on the temporal decay of the total
polarization. A coupling between charge density and spin polarization occurs on
the level of three-site hopping events. The coupling terms are identified as
the anomalous Hall effect and the recently proposed spin Hall effect. Thus, an
unpolarized charge current through a sheet of finite width leads to a
transversal spin accumulation in our model system.Comment: 15 pages, 3 figure
Modified f(G) gravity models with curvature-matter coupling
A modified f(G) gravity model with coupling between matter and geometry is
proposed, which is described by the product of the Lagrange density of the
matter and an arbitrary function of the Gauss-Bonnet term. The field equations
and the equations of motion corresponding to this model show the
non-conservation of the energy-momentum tensor, the presence of an extra-force
acting on test particles and the non-geodesic motion. Moreover, the energy
conditions and the stability criterion at de Sitter point in the modified f(G)
gravity models with curvature-matter coupling are derived, which can degenerate
to the well-known energy conditions in general relativity. Furthermore, in
order to get some insight on the meaning of these energy conditions, we apply
them to the specific models of f(G) gravity and the corresponding constraints
on the models are given. In addition, the conditions and the candidate for
late-time cosmic accelerated expansion in the modified f(G) gravity are studied
by means of conditions of power-law expansion and the equation of state of
matter less than -1/ 3 .Comment: 13 pages, 4 figure
Resonant cancellation of off-resonant effects in a multilevel qubit
Off-resonant effects are a significant source of error in quantum
computation. This paper presents a group theoretic proof that off-resonant
transitions to the higher levels of a multilevel qubit can be completely
prevented in principle. This result can be generalized to prevent unwanted
transitions due to qubit-qubit interactions. A simple scheme exploiting dynamic
pulse control techniques is presented that can cancel transitions to higher
states to arbitrary accuracy.Comment: 4 pages, Revtex, submitted for publicatio
Hadron Structure on the Lattice
A few chosen nucleon properties are described from a lattice QCD perspective:
the nucleon sigma term and the scalar strangeness in the nucleon; the vector
form factors in the nucleon, including the vector strangeness contribution, as
well as parity breaking effects like the anapole and electric dipole moment;
and finally the axial and tensor charges of the nucleon. The status of the
lattice calculations is presented and their potential impact on phenomenology
is discussed.Comment: 17 pages, 9 figures; proceedings of the Conclusive Symposium of the
Collaborative Research Center 443 "Many-body structure of strongly
interacting systems", Mainz, February 23-25, 201
CP violating neutrino oscillation and uncertainties in Earth matter density
We propose a statistical formulation to estimate possible errors in long
baseline neutrino oscillation experiments caused by uncertainties in the Earth
matter density. A quantitative investigation of the effect is made on the CP
asymmetry in future neutrino factory experiments.Comment: Latex, 10 pages, 5 figure
Quantum Computing with Atomic Josephson Junction Arrays
We present a quantum computing scheme with atomic Josephson junction arrays.
The system consists of a small number of atoms with three internal states and
trapped in a far-off resonant optical lattice. Raman lasers provide the
"Josephson" tunneling, and the collision interaction between atoms represent
the "capacitive" couplings between the modes. The qubit states are collective
states of the atoms with opposite persistent currents. This system is closely
analogous to the superconducting flux qubit. Single qubit quantum logic gates
are performed by modulating the Raman couplings, while two-qubit gates result
from a tunnel coupling between neighboring wells. Readout is achieved by tuning
the Raman coupling adiabatically between the Josephson regime to the Rabi
regime, followed by a detection of atoms in internal electronic states.
Decoherence mechanisms are studied in detail promising a high ratio between the
decoherence time and the gate operation time.Comment: 7 figure
A generic method to develop simulation models for ambulance systems
In this paper, we address the question of generic simulation models and their role in improving emergency care around the world. After reviewing the development of ambulance models and the contexts in which they have been applied, we report the construction of a reusable model for ambulance systems. Further, we describe the associated parameters, data sources, and performance measures, and report on the collection of information, as well as the use of optimisation to configure the service to best effect. Having developed the model, we have validated it using real data from the emergency medical system in a Brazilian city, Belo Horizonte. To illustrate the benefits of standardisation and reusability we apply the model to a UK context by exploring how different rules of engagement would change the performance of the system. Finally, we consider the impact that one might observe if such rules were adopted by the Brazilian system
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
- …
