8,447 research outputs found
Exploring the Referral and Usage of Science Fiction in HCI Literature
Research on science fiction (sci-fi) in scientific publications has indicated
the usage of sci-fi stories, movies or shows to inspire novel Human-Computer
Interaction (HCI) research. Yet no studies have analysed sci-fi in a top-ranked
computer science conference at present. For that reason, we examine the CHI
main track for the presence and nature of sci-fi referrals in relationship to
HCI research. We search for six sci-fi terms in a dataset of 5812 CHI main
proceedings and code the context of 175 sci-fi referrals in 83 papers indexed
in the CHI main track. In our results, we categorize these papers into five
contemporary HCI research themes wherein sci-fi and HCI interconnect: 1)
Theoretical Design Research; 2) New Interactions; 3) Human-Body Modification or
Extension; 4) Human-Robot Interaction and Artificial Intelligence; and 5)
Visions of Computing and HCI. In conclusion, we discuss results and
implications located in the promising arena of sci-fi and HCI research.Comment: v1: 20 pages, 4 figures, 3 tables, HCI International 2018 accepted
submission v2: 20 pages, 4 figures, 3 tables, added link/doi for Springer
proceedin
The J-triplet Cooper pairing with magnetic dipolar interactions
Recently, cold atomic Fermi gases with the large magnetic dipolar interaction
have been laser cooled down to quantum degeneracy. Different from
electric-dipoles which are classic vectors, atomic magnetic dipoles are
quantum-mechanical matrix operators proportional to the hyperfine-spin of
atoms, thus provide rich opportunities to investigate exotic many-body physics.
Furthermore, unlike anisotropic electric dipolar gases, unpolarized magnetic
dipolar systems are isotropic under simultaneous spin-orbit rotation. These
features give rise to a robust mechanism for a novel pairing symmetry: orbital
p-wave (L=1) spin triplet (S=1) pairing with total angular momentum of the
Cooper pair J=1. This pairing is markedly different from both the He-B
phase in which J=0 and the He- phase in which is not conserved. It
is also different from the p-wave pairing in the single-component electric
dipolar systems in which the spin degree of freedom is frozen
Subitizing with Variational Autoencoders
Numerosity, the number of objects in a set, is a basic property of a given
visual scene. Many animals develop the perceptual ability to subitize: the
near-instantaneous identification of the numerosity in small sets of visual
items. In computer vision, it has been shown that numerosity emerges as a
statistical property in neural networks during unsupervised learning from
simple synthetic images. In this work, we focus on more complex natural images
using unsupervised hierarchical neural networks. Specifically, we show that
variational autoencoders are able to spontaneously perform subitizing after
training without supervision on a large amount images from the Salient Object
Subitizing dataset. While our method is unable to outperform supervised
convolutional networks for subitizing, we observe that the networks learn to
encode numerosity as basic visual property. Moreover, we find that the learned
representations are likely invariant to object area; an observation in
alignment with studies on biological neural networks in cognitive neuroscience
Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential
The method of synthetic gauge potentials opens up a new avenue for our
understanding and discovering novel quantum states of matter. We investigate
the topological quantum phase transition of Fermi gases trapped in a honeycomb
lattice in the presence of a synthetic non- Abelian gauge potential. We develop
a systematic fermionic effective field theory to describe a topological quantum
phase transition tuned by the non-Abelian gauge potential and ex- plore its
various important experimental consequences. Numerical calculations on lattice
scales are performed to compare with the results achieved by the fermionic
effective field theory. Several possible experimental detection methods of
topological quantum phase tran- sition are proposed. In contrast to condensed
matter experiments where only gauge invariant quantities can be measured, both
gauge invariant and non-gauge invariant quantities can be measured by
experimentally generating various non-Abelian gauges corresponding to the same
set of Wilson loops
Emotional Fuzzy Sliding-Mode Control for Unknown Nonlinear Systems
[[abstract]]The brain emotional learning model can be implemented with a simple hardware and processor; however, the learning model cannot model the qualitative aspects of human knowledge. To solve this problem, a fuzzy-based emotional learning model (FELM) with structure and parameter learning is proposed. The membership functions and fuzzy rules can be learned through the derived learning scheme. Further, an emotional fuzzy sliding-mode control (EFSMC) system, which does not need the plant model, is proposed for unknown nonlinear systems. The EFSMC system is applied to an inverted pendulum and a chaotic synchronization. The simulation results with the use of EFSMC system demonstrate the feasibility of FELM learning procedure. The main contributions of this paper are (1) the FELM varies its structure dynamically with a simple computation; (2) the parameter learning imitates the role of emotions in mammalians brain; (3) by combining the advantage of nonsingular terminal sliding-mode control, the EFSMC system provides very high precision and finite-time control performance; (4) the system analysis is given in the sense of the gradient descent method.[[notice]]補正完
Exoplanets and SETI
The discovery of exoplanets has both focused and expanded the search for
extraterrestrial intelligence. The consideration of Earth as an exoplanet, the
knowledge of the orbital parameters of individual exoplanets, and our new
understanding of the prevalence of exoplanets throughout the galaxy have all
altered the search strategies of communication SETI efforts, by inspiring new
"Schelling points" (i.e. optimal search strategies for beacons). Future efforts
to characterize individual planets photometrically and spectroscopically, with
imaging and via transit, will also allow for searches for a variety of
technosignatures on their surfaces, in their atmospheres, and in orbit around
them. In the near-term, searches for new planetary systems might even turn up
free-floating megastructures.Comment: 9 page invited review. v2 adds some references and v3 has other minor
additions and modification
Collapse of superconductivity in a hybrid tin-graphene Josephson junction array
When a Josephson junction array is built with hybrid
superconductor/metal/superconductor junctions, a quantum phase transition from
a superconducting to a two-dimensional (2D) metallic ground state is predicted
to happen upon increasing the junction normal state resistance. Owing to its
surface-exposed 2D electron gas and its gate-tunable charge carrier density,
graphene coupled to superconductors is the ideal platform to study the
above-mentioned transition between ground states. Here we show that decorating
graphene with a sparse and regular array of superconducting nanodisks enables
to continuously gate-tune the quantum superconductor-to-metal transition of the
Josephson junction array into a zero-temperature metallic state. The
suppression of proximity-induced superconductivity is a direct consequence of
the emergence of quantum fluctuations of the superconducting phase of the
disks. Under perpendicular magnetic field, the competition between quantum
fluctuations and disorder is responsible for the resilience at the lowest
temperatures of a superconducting glassy state that persists above the upper
critical field. Our results provide the entire phase diagram of the disorder
and magnetic field-tuned transition and unveil the fundamental impact of
quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure
Ethanol reversal of tolerance to the respiratory depressant effects of morphine
Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths
The luminosity function of field galaxies
Schmidt's method for construction of luminosity function of galaxies is
generalized by taking into account the dependence of density of galaxies from
the distance in the near Universe. The logarithmical luminosity function (LLF)
of field galaxies depending on morphological type is constructed. We show that
the LLF for all galaxies, and also separately for elliptical and lenticular
galaxies can be presented by Schechter function in narrow area of absolute
magnitudes. The LLF of spiral galaxies was presented by Schechter function for
enough wide area of absolute magnitudes: . Spiral galaxies differ slightly by
parameter . At transition from early spirals to the late spirals parameter in
Schechter function is reduced. The reduction of mean luminosity of galaxies is
observed at transition from elliptical galaxies to lenticular galaxies, to
early spiral galaxies, and further, to late spiral galaxies, in a bright end, .
The completeness and the average density of samples of galaxies of different
morphological types are estimated. In the range the mean number density of all
galaxies is equal 0.127 Mpc-3.Comment: 14 page, 8 figures, to appear in Astrophysic
Optimisation of pH of cadmium chloride post-growth-treatment in processing CDS/CDTE based thin film solar cells
The role of Chlorine-based activation in the production of high quality CdS/CdTe photovoltaic have been well discussed and explored with an overlook of the effect of Cadmium chloride (CdCl2) post-growth treatment acidity on the property of the fabricated devices. This work focuses on the optimisation of CdCl2 post-growth treatment pH as it affects both the material and fabricated device properties of all-electrodeposited multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration. CdCl2 treatments with acidity ranging from pH1 to pH4 were explored. The properties of the ensued CdTe layer were explored using optical, morphological, compositional structural and electrical property analysis, while, the effect on fabricated multilayer glass/FTO/n-CdS/n-CdTe/p-CdTe configuration were also explored using both I-V and C-V measurements. Highest improvements in the optical, morphological, compositional and structural were observed at pH2 CdCl2 post-growth treatment with an improvement in absorption edge, grain size, crystallinity and crystallite size. Conductivity type conversions from n-CdTe to p-CdTe, increase in pin-hole density and collapse of the absorption edge were observed after pH1 CdCl2 treatment. The highest fabricated solar cell efficiency of 13% was achieved using pH2 CdCl2 treatment as compared to other pH values explored
- …
