13,517 research outputs found
Run Generation Revisited: What Goes Up May or May Not Come Down
In this paper, we revisit the classic problem of run generation. Run
generation is the first phase of external-memory sorting, where the objective
is to scan through the data, reorder elements using a small buffer of size M ,
and output runs (contiguously sorted chunks of elements) that are as long as
possible.
We develop algorithms for minimizing the total number of runs (or
equivalently, maximizing the average run length) when the runs are allowed to
be sorted or reverse sorted. We study the problem in the online setting, both
with and without resource augmentation, and in the offline setting.
(1) We analyze alternating-up-down replacement selection (runs alternate
between sorted and reverse sorted), which was studied by Knuth as far back as
1963. We show that this simple policy is asymptotically optimal. Specifically,
we show that alternating-up-down replacement selection is 2-competitive and no
deterministic online algorithm can perform better.
(2) We give online algorithms having smaller competitive ratios with resource
augmentation. Specifically, we exhibit a deterministic algorithm that, when
given a buffer of size 4M , is able to match or beat any optimal algorithm
having a buffer of size M . Furthermore, we present a randomized online
algorithm which is 7/4-competitive when given a buffer twice that of the
optimal.
(3) We demonstrate that performance can also be improved with a small amount
of foresight. We give an algorithm, which is 3/2-competitive, with
foreknowledge of the next 3M elements of the input stream. For the extreme case
where all future elements are known, we design a PTAS for computing the optimal
strategy a run generation algorithm must follow.
(4) Finally, we present algorithms tailored for nearly sorted inputs which
are guaranteed to have optimal solutions with sufficiently long runs
A novel overcurrent protection method based on wide area measurement in smart grid
PowerTech is the anchor conference of the IEEE Power & Energy Society in EuropeConventional overcurrent protection settings are fixed to detect faults. Power system operation mode varies while the settings of protection devices remain constant. As a result, overcurrent protection has a small protection range and a long operating time because it is incapable of adjusting its setting online. Wide Area Measurements System (WAMS) provides synchronized and real time data which can be utilized in new protection devices. This paper proposes a novel online setting scheme which utilizes online system data to calculate real-time system operation mode. Based on the real-time operation mode, real-time fault current is calculated before fault occurring. Settings of the protection devices are by this means adjusted in real time to expand the protection area and shorten the operating time. The calculation is expanded from single source model to multi-source with Π model. In addition, interval time of settings adjustment Tchange is proposed and calculated by using hyperbolic function model. Based on this method, power system real-time operation condition can be better monitored and the real-time short circuit current can be obtained to improve protection performance. © 2013 IEEE.published_or_final_versio
SECaps: A Sequence Enhanced Capsule Model for Charge Prediction
Automatic charge prediction aims to predict appropriate final charges
according to the fact descriptions for a given criminal case. Automatic charge
prediction plays a critical role in assisting judges and lawyers to improve the
efficiency of legal decisions, and thus has received much attention.
Nevertheless, most existing works on automatic charge prediction perform
adequately on high-frequency charges but are not yet capable of predicting
few-shot charges with limited cases. In this paper, we propose a Sequence
Enhanced Capsule model, dubbed as SECaps model, to relieve this problem.
Specifically, following the work of capsule networks, we propose the seq-caps
layer, which considers sequence information and spatial information of legal
texts simultaneously. Then we design a attention residual unit, which provides
auxiliary information for charge prediction. In addition, our SECaps model
introduces focal loss, which relieves the problem of imbalanced charges.
Comparing the state-of-the-art methods, our SECaps model obtains 4.5% and 6.4%
absolutely considerable improvements under Macro F1 in Criminal-S and
Criminal-L respectively. The experimental results consistently demonstrate the
superiorities and competitiveness of our proposed model.Comment: 13 pages, 3figures, 5 table
Application of hepatitis B virus (HBV) DNA sequence polymorphisms to the study of HBV transmission
Short sequences in hypervariable regions of the hepatitis B virus (HBV) genome can be used to identify different strains, providing a novel approach to the study of HBV transmission. The nucleotide sequence in positions 2551-2650 (1: EcoRI site) was determined for serum HBV DNA from 96 Chinese children living in Hong Kong and from 38 of their parents. HBV DNA was extracted and sequenced after amplification with the polymerase chain reaction, using as primers oligonucleotides corresponding to two conserved sequences. Among 82 unrelated children, 32 HBV DNA variants were present. One sequence was present in 33 children and 31 variants were found among the other 49. Siblings within each of nine families had the same variant; in three families siblings had different variants. Six of the eight fathers and 28 of the 30 mothers had HBV DNA sequences identical to those of their offspring. A total of 34 variants were found among the 134 individuals. The hypothesis of random assortment of sequences in parents and children was rejected (P < .00005). Thus, this new approach proves the occurrence of intrafamilial transmission of HBV among Chinese.published_or_final_versio
Kinetics of thermal oxidation of 6H silicon carbide in oxygen plus trichloroethylene
In this work, the behaviors of the trichloroethylene (TCE) thermal oxidation of 6H silicon carbide (SiC) are investigated. The oxide growth of 6H SiC under different TCE concentrations (ratios of TCE to O2) follows the linear-parabolic oxidation law derived for silicon oxidation by Deal and Grove, J. Appl. Phys., 36 (1965). The oxidation rate with TCE is much higher than that without TCE and strongly depends on the TCE ratio in addition to oxidation temperature and oxidation time. The increase in oxidation rate induced by TCE is between 2.7 and 67% for a TCE ratio of 0.001-0.2 and a temperature of 1000-1150°C. Generally, the oxidation rate increases quickly with the TCE ratio for a TCE ratio less than 0.05 and then gradually saturates for a ratio larger than 0.05. The activation energy EB/A of the TCE oxidation for the TCE ratio range of 0.001-0.2 is 1.04-1.05 eV, which is a little larger than the 1.02 eV of dry oxidation. A two-step model for the TCE oxidation is also proposed to explain the experimental results. The model points out that in the SiC oxidation with TCE, the products (H2O and Cl2) of the reaction between TCE and O2 can speed up the oxidation, and hence, the oxidation rate is highly sensitive to the TCE ratio. © 2005 The Electrochemical Society. All rights reserved.published_or_final_versio
Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean
Initially a North Atlantic project, the CARINA carbon synthesis was extended to include the Southern Ocean. Carbon and relevant hydrographic and geochemical ancillary data from cruises all across the Arctic Mediterranean Seas, Atlantic and Southern Ocean were released to the public and merged into a new database as part of the CARINA synthesis effort. Of a total of 188 cruises, 37 cruises are part of the Southern Ocean, including 11 from the Atlantic sector. The variables from all Southern Ocean cruises, including dissolved inorganic carbon (TCO2), total alkalinity, oxygen, nitrate, phosphate and silicate, were examined for cruise-to-cruise consistency in one collective effort. Seawater pH and chlorofluorocarbons (CFCs) are also part of the database, but the pH quality control (QC) is described in another Earth System Science Data publication, while the complexity of the Southern Ocean physics and biogeochemistry prevented a proper QC analysis of the CFCs. The area-specific procedures of quality control, including crossover analysis between stations and inversion analysis of all crossover data (i.e. secondary QC), are briefly described here for the Atlantic sector of the Southern Ocean. Data from an existing, quality controlled database (GLODAP) were used as a reference for our computations – however, the reference data were included into the analysis without applying the recommended GLODAP adjustments so the corrections could be independently verified. The outcome of this effort is an internally consistent, high-quality carbon data set for all cruises, including the reference cruises. The suggested corrections by the inversion analysis were allowed to vary within a fixed envelope, thus accounting for natural variability. The percentage of cruises adjusted ranged from 31% (for nitrate) to 54% (for phosphate) depending on the variable
On the selection and design of proteins and peptide derivatives for the production of photoluminescent, red-emitting gold quantum clusters
Novel pathways of the synthesis of photoluminescent gold quantum clusters (AuQCs) using biomolecules as reactants provide biocompatible products for biological imaging techniques. In order to rationalize the rules for the preparation of red-emitting AuQCs in aqueous phase using proteins or peptides, the role of different organic structural units was investigated. Three systems were studied: proteins, peptides, and amino acid mixtures, respectively. We have found that cysteine and tyrosine are indispensable residues. The SH/S-S ratio in a single molecule is not a critical factor in the synthesis, but on the other hand, the stoichiometry of cysteine residues and the gold precursor is crucial. These observations indicate the importance of proper chemical behavior of all species in a wide size range extending from the atomic distances (in the AuI-S semi ring) to nanometer distances covering the larger sizes of proteins assuring the hierarchical structure of the whole self-assembled system
Self-rated health in middle-aged and elderly Chinese : distribution, determinants and associations with cardio-metabolic risk factors
Background: Self-rated health (SRH) has been demonstrated to be an accurate reflection of a person's health and a valid predictor of incident mortality and chronic morbidity. We aimed to evaluate the distribution and factors associated with SRH and its association with biomarkers of cardio-metabolic diseases among middle-aged and elderly Chinese.
Methods: Survey of 1,458 men and 1,831 women aged 50 to 70 years, conducted in one urban and two rural areas of Beijing and Shanghai in 2005. SRH status was measured and categorized as good (very good and good) vs. not good (fair, poor and very poor). Determinants of SRH and associations with biomarkers of cardio-metabolic diseases were evaluated using logistic regression.
Results: Thirty two percent of participants reported good SRH. Males and rural residents tended to report good SRH. After adjusting for potential confounders, residence, physical activity, employment status, sleep quality and presence of diabetes, cardiovascular disease, and depression were the main determinants of SRH. Those free from cardiovascular disease (OR 3.68; 95%CI 2.39; 5.66), rural residents (OR 1.89; 95% CI 1.47; 2.43), non-depressed participants (OR 2.50; 95% CI 1.67; 3.73) and those with good sleep quality (OR 2.95; 95% CI 2.22; 3.91) had almost twice or over the chance of reporting good SRH compared to their counterparts. There were significant associations -and trend- between SRH and levels of inflammatory markers, insulin levels and insulin resistance.
Conclusion: Only one third of middle-aged and elderly Chinese assessed their health status as good or very good. Although further longitudinal studies are required to confirm our findings, interventions targeting social inequalities, lifestyle patterns might not only contribute to prevent chronic morbidity but as well to improve populations' perceived health
Discovery Of An Ultracompact Gamma-ray Millisecond Pulsar Binary Candidate
published_or_final_versio
Sequence Variations of Full-Length Hepatitis B Virus Genomes in Chinese Patients with HBsAg-Negative Hepatitis B Infection
BACKGROUND: The underlying mechanism of HBsAg-negative hepatitis B virus (HBV) infection is notoriously difficult to elucidate because of the extremely low DNA levels which define the condition. We used a highly efficient amplification method to overcome this obstacle and achieved our aim which was to identify specific mutations or sequence variations associated with this entity. METHODS: A total of 185 sera and 60 liver biopsies from HBsAg-negative, HBV DNA-positive subjects or known chronic hepatitis B (CHB) subjects with HBsAg seroclearance were amplified by rolling circle amplification followed by full-length HBV genome sequencing. Eleven HBsAg-positive CHB subjects were included as controls. The effects of pivotal mutations identified on regulatory regions on promoter activities were analyzed. RESULTS: 22 and 11 full-length HBV genomes were amplified from HBsAg-negative and control subjects respectively. HBV genotype C was the dominant strain. A higher mutation frequency was observed in HBsAg-negative subjects than controls, irrespective of genotype. The nucleotide diversity over the entire HBV genome was significantly higher in HBsAg-negative subjects compared with controls (p = 0.008) and compared with 49 reference sequences from CHB patients (p = 0.025). In addition, HBsAg-negative subjects had significantly higher amino acid substitutions in the four viral genes than controls (all p<0.001). Many mutations were uniquely found in HBsAg-negative subjects, including deletions in promoter regions (13.6%), abolishment of pre-S2/S start codon (18.2%), disruption of pre-S2/S mRNA splicing site (4.5%), nucleotide duplications (9.1%), and missense mutations in "alpha" determinant region, contributing to defects in HBsAg production. CONCLUSIONS: These data suggest an accumulation of multiple mutations constraining viral transcriptional activities contribute to HBsAg-negativity in HBV infection.published_or_final_versio
- …
