2,114 research outputs found
Very strong intrinsic supercurrent carrying ability and vortex avalanches in (Ba,K)Fe2As2 superconducting single crystals
We report that single crystals of (Ba,K)Fe2As2 with Tc = 32 K have a pinning
potential, U0, as high as 10^4 K, with U0 showing very little field
depend-ence. In addition, the (Ba,K)Fe2As2 single crystals become isotropic at
low temperatures and high magnetic fields, resulting in a very rigid vortex
lattice, even in fields very close to Hc2. The rigid vortices in the two
dimensional (Ba,K)Fe2As2 distinguish this compound from 2D high Tc cuprate
superconductors with 2D vortices, and make it being capable of cearrying very
high critical current.Flux jumping due to high Jc was also observed in large
samples at low temperatures.Comment: 4 pages, 7 figures. submitte
Orbital Kondo behavior from dynamical structural defects
The interaction between an atom moving in a model double-well potential and
the conduction electrons is treated using renormalization group methods in
next-to-leading logarithmic order. A large number of excited states is taken
into account and the Kondo temperature is computed as a function of
barrier parameters. We find that for special parameters can be close to
and it can be of the same order of magnitude as the renormalized
splitting . However, in the perturbative regime we always find that
T_K \alt \Delta with a T_K \alt 1 {\rm K} [Aleiner {\em et al.}, Phys.
Rev. Lett. {\bf 86}, 2629 (2001)]. We also find that remains
unrenormalized at energies above the Debye frequency, .Comment: 9 pages, 9 figures, RevTe
The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?
Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees
Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was
a complex region containing current helicity flux of opposite signs. The main
positive sunspots were dominated by negative helicity fields, while positive
helicity patches persisted both inside and around the main positive sunspots.
Based on a comparison of two days of deduced current helicity density,
pronounced changes were noticed which were associated with the occurrence of an
X10 flare that peaked at 20:49 UT, 2003 October 29. The average current
helicity density (negative) of the main sunspots decreased significantly by
about 50. Accordingly, the helicity densities of counter-helical patches
(positive) were also found to decay by the same proportion or more. In
addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100
keV energy range. The cores of these two HXR footpoints were adjacent to the
positions of two patches with positive current helicity which disappeared after
the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted
from reconnection between magnetic flux tubes having opposite current helicity.
Finally, the global decrease of current helicity in AR 10486 by ~50% can be
understood as the helicity launched away by the halo coronal mass ejection
(CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
Development of a multiplex event-specific PCR assay for detection of genetically modified rice
Global rice supplies have been found contaminated with unapproved varieties of genetically modified (GM) rice in recent years, which has led to product recalls in several of countries. Faster and more effective detection of GM contamination can prevent adulterated food, feed and seed from being consumed and grown, minimize the potential environmental, health or economic damage. In this study, a simple, reliable and cost-effective multiplex polymerase chain reaction (PCR) assay for identifying genetic modifications of TT51-1, Kemingdao1 (KMD1) and Kefeng6 (KF6) rice was developed by using the event-specific fragment. The limit of detection (LOD) for each event in the multiplex PCR is approximately 0.1%. Developed multiplex PCR assays can provide a rapid and simultaneous detection of GM rice
Wave scattering from self-affine surfaces
Electromagnetic wave scattering from a perfectly reflecting self-affine
surface is considered. Within the framework of the Kirchhoff approximation, we
show that the scattering cross section can be exactly written as a function of
the scattering angle via a centered symmetric Levy distribution for general
roughness amplitude, Hurst exponent and wavelength of the incident wave. The
amplitude of the specular peak, its width and its position are discussed as
well as the power law decrease (with scattering angle) of the scattering cross
section.Comment: RevTeX, 4 pages including 2 figures. Submitted Phys. Rev. Let
Radiative Corrections to One-Photon Decays of Hydrogenic Ions
Radiative corrections to the decay rate of n=2 states of hydrogenic ions are
calculated. The transitions considered are the M1 decay of the 2s state to the
ground state and the E1(M2) decays of the and states to
the ground state. The radiative corrections start in order , but the method used sums all orders of . The leading
correction for the E1 decays is calculated and compared
with the exact result. The extension of the calculational method to parity
nonconserving transitions in neutral atoms is discussed.Comment: 22 pages, 2 figure
Conductance renormalization and conductivity of a multi-subband Tomonaga-Luttinger model
We studied the conductance renormalization and conductivity of multi-subband
Tomonaga-Luttinger models with inter-subband interactions. We found that, as in
single-band systems, the conductance of a multi-subband system with an
arbitrary number of subbands is not renormalized due to interaction between
electrons. We derived a formula for the conductivity in multi-subband models.
We applied it to a simplified case and found that inter-subband interaction
enhances the conductivity, which is contrary to the intra-subband repulsive
interaction, and that the conductivity is further enhanced for a larger number
of subbands.Comment: 12 pages, no figures. to be published in Physical Review B as a brief
repor
Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma
High-grade epithelial ovarian carcinomas (OC) containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pre-treatment and post-progression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase 2 study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed OC. In six of 12 pre-treatment biopsies, a truncation mutation in BRCA1, RAD51C or RAD51D was identified. In five of six paired post-progression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft (PDX), as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations
Photon interferometry and size of the hot zone in relativistic heavy ion collisions
The parameters obtained from the theoretical analysis of the single photon
spectra observed by the WA98 collaboration at SPS energies have been used to
evaluate the two photon correlation functions. The single photon spectra and
the two photon correlations at RHIC energies have also been evaluated, taking
into account the effects of the possible spectral change of hadrons in a
thermal bath. We find that the ratio for SPS and
for RHIC energy.Comment: text changed, figures adde
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles
The extreme solar and SEP event of 20 January 2005 is analyzed from two
perspectives. Firstly, we study features of the main phase of the flare, when
the strongest emissions from microwaves up to 200 MeV gamma-rays were observed.
Secondly, we relate our results to a long-standing controversy on the origin of
SEPs arriving at Earth, i.e., acceleration in flares, or shocks ahead of CMEs.
All emissions from microwaves up to 2.22 MeV line gamma-rays during the main
flare phase originated within a compact structure located just above sunspot
umbrae. A huge radio burst with a frequency maximum at 30 GHz was observed,
indicating the presence of a large number of energetic electrons in strong
magnetic fields. Thus, protons and electrons responsible for flare emissions
during its main phase were accelerated within the magnetic field of the active
region. The leading, impulsive parts of the GLE, and highest-energy gamma-rays
identified with pi^0-decay emission, are similar and correspond in time. The
origin of the pi^0-decay gamma-rays is argued to be the same as that of lower
energy emissions. We estimate the sky-plane speed of the CME to be 2000-2600
km/s, i.e., high, but of the same order as preceding non-GLE-related CMEs from
the same active region. Hence, the flare itself rather than the CME appears to
determine the extreme nature of this event. We conclude that the acceleration,
at least, to sub-relativistic energies, of electrons and protons, responsible
for both the flare emissions and the leading spike of SEP/GLE by 07 UT, are
likely to have occurred simultaneously within the flare region. We do not rule
out a probable contribution from particles accelerated in the CME-driven shock
for the leading GLE spike, which seemed to dominate later on.Comment: 34 pages, 14 Postscript figures. Solar Physics, accepted. A typo
corrected. The original publication is available at
http://www.springerlink.co
- …
