174,476 research outputs found
Exciton Hierarchies in Gapped Carbon Nanotubes
We present evidence that the strong electron-electron interactions in gapped
carbon nanotubes lead to finite hierarchies of excitons within a given nanotube
subband. We study these hierarchies by employing a field theoretic reduction of
the gapped carbon nanotube permitting electron-electron interactions to be
treated exactly. We analyze this reduction by employing a Wilsonian-like
numerical renormalization group. We are so able to determine the gap ratios of
the one-photon excitons as a function of the effective strength of
interactions. We also determine within the same subband the gaps of the
two-photon excitons, the single particle gaps, as well as a subset of the dark
excitons. The strong electron-electron interactions in addition lead to
strongly renormalized dispersion relations where the consequences of
spin-charge separation can be readily observed.Comment: 8 pages, 4 figure
Optical selection rules of graphene nanoribbons
Optical selection rules for one-dimensional graphene nanoribbons are
analytically studied and clarified based on the tight-binding model. A
theoretical explanation, through analyzing the velocity matrix elements and the
features of wavefunctions, can account for the selection rules, which depend on
the edge structure of nanoribbon, namely armchair or zigzag edges. The
selection rule of armchair nanoribbons is \Delta J=0, and the optical
transitions occur from the conduction to valence subbands of the same index.
Such a selection rule originates in the relationships between two sublattices
and between conduction and valence subbands. On the other hand, zigzag
nanoribbons exhibit the selection rule |\Delta J|=odd, which results from the
alternatively changing symmetry property as the subband index increases. An
efficiently theoretical prediction on transition energies is obtained with the
application of selection rules. Furthermore, the energies of band edge states
become experimentally attainable via optical measurements
Recommended from our members
Prospect of Making Ceramic Shell Mold by Ceramic Laser Fusion
Manufacturing prototypical castings by conventional investment casting not only takes
several weeks, but also is prohibitively expensive. Z Corporation in USA, EOS GmbH and
IPT in Germany employ the techniques of 3DP and SLS respectively to make directly ceramic
shell molds for metal castings. Although those techniques dramatically reduce time
expenditure and production cost, each layer cannot be thinner than 50 µm because of using
powder to pave layers. The dimensional accuracy and roughness of the castings still cannot
meet the specification of precision casting. Therefore, in this paper the ceramic laser fusion
(CLF) was used to pave layers. Each layer can be thinner than 25 µm, so that the step effect
can be diminished and the workpiece surface can be smoother; drying time will be shortened
dramatically. Moreover, the inherent solid-state support formed by green portion has the
capability of preventing upward and downward deformation of the scanned cross sections. In
order to make shell mold which meets the roughness requirement (Rq=3.048µm) of the
precision casting, following issues have to be further studied: (1) design a proper ceramic
shell mold structure, (2) design a paving chamber for paving a complete green layer which
can be easily collapsed, (3) cut down drying time, (4) optimize laser scanning process
parameters with the smallest distortion, (5) eliminate sunken area, (6) reduce layer thickness
to less than13µm, (7) control power to guarantee the energy uniformly absorbed by workpiece,
and (8) develop a method which can directly clean green portion in cavity from gate.Mechanical Engineerin
Structural ultrafast dynamics of macromolecules: diffraction of free DNA and effect of hydration
Of special interest in molecular biology is the study of structural and conformational changes which are free of the additional effects of the environment. In the present contribution, we report on the ultrafast unfolding dynamics of a large DNA macromolecular ensemble in vacuo for a number of temperature jumps, and make a comparison with the unfolding dynamics of the DNA in aqueous solution. A number of coarse-graining approaches, such as kinetic intermediate structure (KIS) model and ensemble-averaged radial distribution functions, are used to account for the transitional dynamics of the DNA without sacrificing the structural resolution. The studied ensembles of DNA macromolecules were generated using distributed molecular dynamics (MD) simulations, and the ensemble convergence was ensured by monitoring the ensemble-averaged radial distribution functions and KIS unfolding trajectories. Because the order–disorder transition in free DNA implies unzipping, coiling, and strand-separation processes which occur consecutively or competitively depending on the initial and final temperature of the ensemble, DNA order–disorder transition in vacuo cannot be described as a two-state (un)folding process
Structural Dynamics of Free Proteins in Diffraction
Among the macromolecular patterns of biological significance, right-handed α-helices are perhaps the most abundant structural motifs. Here, guided by experimental findings, we discuss both ultrafast initial steps and longer-time-scale structural dynamics of helix-coil
transitions induced by a range of temperature jumps in large, isolated macromolecular ensembles of an α-helical protein segment thymosin β_9 (Tβ_9), and elucidate the comprehensive picture of (un)folding. In continuation of an earlier theoretical work from this laboratory that utilized a simplistic structure-scrambling algorithm combined
with a variety of self-avoidance thresholds to approximately model helix-coil transitions in Tβ_9, in the present contribution we focus on the actual dynamics of unfolding as obtained from massively distributed ensemble-convergent MD simulations which provide an unprecedented scope of information on the nature of transient macromolecular structures, and with atomic-scale spatiotemporal resolution. In addition to the use of radial distribution functions of ultrafast electron diffraction (UED) simulations in gaining an insight into the elementary steps of conformational interconversions, we also investigate the structural dynamics of the protein via
the native (α-helical) hydrogen bonding contact metric which is an intuitive coarse graining approach. Importantly, the decay of α-helical motifs and the (globular) conformational annealing in Tβ_9 occur consecutively or competitively, depending on the
magnitude of temperature jump
Internal Gravity Waves Modulate the Apparent Misalignment of Exoplanets around Hot Stars
We propose that the observed misalignment between extra-solar planets and
their hot host stars can be explained by angular momentum transport within the
host star. Observations have shown that this misalignment is preferentially
around hot stars, which have convective cores and extended radiative envelopes.
This situation is amenable to substantial angular momentum transport by
internal gravity waves (IGW) generated at the convective-radiative interface.
Here we present numerical simulations of this process and show that IGW can
modulate the surface rotation of the star. With these two- dimensional
simulations we show that IGW could explain the retrograde orbits observed in
systems such as HAT-P-6 and HAT-P-7, however, extension to high obliquity
objects will await future three- dimensional simulations. We note that these
results also imply that individual massive stars should show temporal
variations in their v sini measurements.Comment: 6 pages, 2 figures, Accepted for publication in ApJ
Magnetic impurity in the vicinity of a vacancy in bilayer graphene
We use quantum Monte Carlo method to study a magnetic impurity located next
to a vacancy in bilayer graphene with Bernal stacking. Due to the broken
symmetry between two sublattices in bilayer system, there exist two different
types of vacancy induced localized state. We find that the magnetic property of
the adatom located on the adjacent site of the vacancy depends on whether the
vacancy belongs to A or B sublattice. In general, local moment is more strongly
suppressed if the vacancy belongs to the sublattice A when . We
switch the values of the chemical potential and study the basic thermodynamic
quantities and the correlation functions between the magnetic adatom and the
carbon sites.Comment: 3 pages, 4 figures, conferenc
- …
