18,964 research outputs found
DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration.
Deleted in liver cancer 1 (DLC1) is a RhoGTPase activation protein-containing tumor suppressor that associates with various types of cancer. Although DLC2 shares a similar domain structure with that of DLC1, the function of DLC2 is not well characterized. Here, we describe the expression and ablation of DLC2 in mice using a reporter-knockout approach. DLC2 is expressed in several tissues and in endothelial cells (ECs) of blood vessels. Although ECs and blood vessels show no histological abnormalities and mice appear overall healthy, DLC2-mutant mice display enhanced angiogenic responses induced by matrigel and by tumor cells. Silencing of DLC2 in human ECs has reduced cell attachment, increased migration, and tube formation. These changes are rescued by silencing of RhoA, suggesting that the process is RhoA pathway dependent. These results indicate that DLC2 is not required for mouse development and normal vessel formation, but may protect mouse from unwanted angiogenesis induced by, for example, tumor cells
LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice
Mammalian oocytes are arrested at prophase I until puberty when hormonal signals induce the resumption of meiosis I and progression to meiosis II. Meiotic progression is controlled by CDK1 activity and is accompanied by dynamic epigenetic changes. Although the signalling pathways regulating CDK1 activity are well defined, the functional significance of epigenetic changes remains largely unknown. Here we show that LSD1, a lysine demethylase, regulates histone H3 lysine 4 di-methylation (H3K4me2) in mouse oocytes and is essential for meiotic progression. Conditional deletion of Lsd1 in growing oocytes results in precocious resumption of meiosis and spindle and chromosomal abnormalities. Consequently, most Lsd1-null oocytes fail to complete meiosis I and undergo apoptosis. Mechanistically, upregulation of CDC25B, a phosphatase that activates CDK1, is responsible for precocious meiotic resumption and also contributes to subsequent spindle and chromosomal defects. Our findings uncover a functional link between LSD1 and the major signalling pathway governing meiotic progression
Vertex-Ball Spring Smoothing: An efficient method for unstructured dynamic hybrid meshes
postprin
A novel overcurrent protection method based on wide area measurement in smart grid
PowerTech is the anchor conference of the IEEE Power & Energy Society in EuropeConventional overcurrent protection settings are fixed to detect faults. Power system operation mode varies while the settings of protection devices remain constant. As a result, overcurrent protection has a small protection range and a long operating time because it is incapable of adjusting its setting online. Wide Area Measurements System (WAMS) provides synchronized and real time data which can be utilized in new protection devices. This paper proposes a novel online setting scheme which utilizes online system data to calculate real-time system operation mode. Based on the real-time operation mode, real-time fault current is calculated before fault occurring. Settings of the protection devices are by this means adjusted in real time to expand the protection area and shorten the operating time. The calculation is expanded from single source model to multi-source with Π model. In addition, interval time of settings adjustment Tchange is proposed and calculated by using hyperbolic function model. Based on this method, power system real-time operation condition can be better monitored and the real-time short circuit current can be obtained to improve protection performance. © 2013 IEEE.published_or_final_versio
Integrated multiple mediation analysis: A robustness–specificity trade-off in causal structure
Recent methodological developments in causal mediation analysis have addressed several issues regarding multiple mediators. However, these developed methods differ in their definitions of causal parameters, assumptions for identification, and interpretations of causal effects, making it unclear which method ought to be selected when investigating a given causal effect. Thus, in this study, we construct an integrated framework, which unifies all existing methodologies, as a standard for mediation analysis with multiple mediators. To clarify the relationship between existing methods, we propose four strategies for effect decomposition: two-way, partially forward, partially backward, and complete decompositions. This study reveals how the direct and indirect effects of each strategy are explicitly and correctly interpreted as path-specific effects under different causal mediation structures. In the integrated framework, we further verify the utility of the interventional analogues of direct and indirect effects, especially when natural direct and indirect effects cannot be identified or when cross-world exchangeability is invalid. Consequently, this study yields a robustness–specificity trade-off in the choice of strategies. Inverse probability weighting is considered for estimation. The four strategies are further applied to a simulation study for performance evaluation and for analyzing the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer data set from Taiwan to investigate the causal effect of hepatitis C virus infection on mortality
Inspiratory muscle warm-up does not improve cycling time-trial performance
Purpose: This study examined the effects of an active cycling warm-up, with and without the addition of an inspiratory muscle warm-up (IMW), on 10-km cycling time-trial performance
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
Assessing the Health of Richibucto Estuary with the Latent Health Factor Index
The ability to quantitatively assess the health of an ecosystem is often of
great interest to those tasked with monitoring and conserving ecosystems. For
decades, research in this area has relied upon multimetric indices of various
forms. Although indices may be numbers, many are constructed based on
procedures that are highly qualitative in nature, thus limiting the
quantitative rigour of the practical interpretations made from these indices.
The statistical modelling approach to construct the latent health factor index
(LHFI) was recently developed to express ecological data, collected to
construct conventional multimetric health indices, in a rigorous quantitative
model that integrates qualitative features of ecosystem health and preconceived
ecological relationships among such features. This hierarchical modelling
approach allows (a) statistical inference of health for observed sites and (b)
prediction of health for unobserved sites, all accompanied by formal
uncertainty statements. Thus far, the LHFI approach has been demonstrated and
validated on freshwater ecosystems. The goal of this paper is to adapt this
approach to modelling estuarine ecosystem health, particularly that of the
previously unassessed system in Richibucto in New Brunswick, Canada. Field data
correspond to biotic health metrics that constitute the AZTI marine biotic
index (AMBI) and abiotic predictors preconceived to influence biota. We also
briefly discuss related LHFI research involving additional metrics that form
the infaunal trophic index (ITI). Our paper is the first to construct a
scientifically sensible model to rigorously identify the collective explanatory
capacity of salinity, distance downstream, channel depth, and silt-clay content
--- all regarded a priori as qualitatively important abiotic drivers ---
towards site health in the Richibucto ecosystem.Comment: On 2013-05-01, a revised version of this article was accepted for
publication in PLoS One. See Journal reference and DOI belo
The J-triplet Cooper pairing with magnetic dipolar interactions
Recently, cold atomic Fermi gases with the large magnetic dipolar interaction
have been laser cooled down to quantum degeneracy. Different from
electric-dipoles which are classic vectors, atomic magnetic dipoles are
quantum-mechanical matrix operators proportional to the hyperfine-spin of
atoms, thus provide rich opportunities to investigate exotic many-body physics.
Furthermore, unlike anisotropic electric dipolar gases, unpolarized magnetic
dipolar systems are isotropic under simultaneous spin-orbit rotation. These
features give rise to a robust mechanism for a novel pairing symmetry: orbital
p-wave (L=1) spin triplet (S=1) pairing with total angular momentum of the
Cooper pair J=1. This pairing is markedly different from both the He-B
phase in which J=0 and the He- phase in which is not conserved. It
is also different from the p-wave pairing in the single-component electric
dipolar systems in which the spin degree of freedom is frozen
- …
