132,477 research outputs found
Statistical Modelling of Information Sharing: Community, Membership and Content
File-sharing systems, like many online and traditional information sharing
communities (e.g. newsgroups, BBS, forums, interest clubs), are dynamical
systems in nature. As peers get in and out of the system, the information
content made available by the prevailing membership varies continually in
amount as well as composition, which in turn affects all peers' join/leave
decisions. As a result, the dynamics of membership and information content are
strongly coupled, suggesting interesting issues about growth, sustenance and
stability.
In this paper, we propose to study such communities with a simple statistical
model of an information sharing club. Carrying their private payloads of
information goods as potential supply to the club, peers join or leave on the
basis of whether the information they demand is currently available.
Information goods are chunked and typed, as in a file sharing system where
peers contribute different files, or a forum where messages are grouped by
topics or threads. Peers' demand and supply are then characterized by
statistical distributions over the type domain.
This model reveals interesting critical behaviour with multiple equilibria. A
sharp growth threshold is derived: the club may grow towards a sustainable
equilibrium only if the value of an order parameter is above the threshold, or
shrink to emptiness otherwise. The order parameter is composite and comprises
the peer population size, the level of their contributed supply, the club's
efficiency in information search, the spread of supply and demand over the type
domain, as well as the goodness of match between them.Comment: accepted in International Symposium on Computer Performance,
Modeling, Measurements and Evaluation, Juan-les-Pins, France, October-200
Partonic Effects in Heavy Ion Collisions at RHIC
Effects of partonic interactions in heavy ion collisions at RHIC are studied
in a multiphase transport model (AMPT) that includes both initial partonic and
final hadronic interactions.It is found that a large parton scattering cross
section is needed to understand the measured elliptic flow of pions and
two-pion correlation function.Comment: 10 pages, 5 figures, Workshop on Quark and Hadron Dynamics, Budapest,
Hungary, March 3-7, 200
Crumpling wires in two dimensions
An energy-minimal simulation is proposed to study the patterns and mechanical
properties of elastically crumpled wires in two dimensions. We varied the
bending rigidity and stretching modulus to measure the energy allocation,
size-mass exponent, and the stiffness exponent. The mass exponent is shown to
be universal at value . We also found that the stiffness exponent
is universal, but varies with the plasticity parameters and
. These numerical findings agree excellently with the experimental
results
Remark on approximation in the calculation of the primordial spectrum generated during inflation
We re-examine approximations in the analytical calculation of the primordial
spectrum of cosmological perturbation produced during inflation. Taking two
inflation models (chaotic inflation and natural inflation) as examples, we
numerically verify the accuracy of these approximations.Comment: 10 pages, 6 figures, to appear in PR
Two-dimensional turbulence models
Two-dimensional turbulence models are compared with experimental measurements made using an array of instrumented towers. The spatial correlation coefficient, the two-point spectrum or cross spectrum, and the coherence function are discussed. The prediction techniques in general agree reasonably well with the experimental results. Measurements of the integral length scale however, do not correlate well with the prediction model
Low-level gust gradient program and avialtion workshop effort
The Proceedings of the Workshop on Meteorological and Environmental Inputs to Aviation Systems, hosted by the University of Tennessee Space Institute, October 26-28, 1982, were prepared for publication. The Proceedings were submitted to FAA and will be distributed by August. Also, the proceedings of a one day workshop devoted specifically to wind shear and hosted during the same time frame were prepared and distributed. Plans for the 1983 workshop are proceeding extremely well. The workshop theme was established, the committee topics identified, and all ten committee chairmen contacted have agreed to accept their respective assignments. Additional logistics for the workshop are being carried out. The 1983 workshop is scheduled for October 26-28, 1983. Data gathered with the B-57B during the Joint Airport Weather Studies Project in Denver, Colorado, were analyzed. All runs for Flight 6 on July 16, 1982, were analyzed. Spectra, cross spectra and probability distributions were computed for each run. Also, Runs 10-14 of Flight 7 on July 15, 1982, were analyzed in similar detail
Mixing and transient interface condensation of a liquid hydrogen tank
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed
The complex relationship between weather and dengue virus transmission in Thailand.
Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983-2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission "weather-space," basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at Onset change-point when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27-29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near Peak, yet small reductions at Onset can substantially reduce epidemic magnitude. Monitoring the Quiet-Phase is fundamental in effectively targeting interventions pre-emptively
- …
