903 research outputs found
Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry
Levels of trace radiopurity in active detector materials is a subject of
major concern in low-background experiments. Procedures were devised to measure
trace concentrations of I-129 in the inorganic salt CsI as well as in organic
liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to
improvement in sensitivities by several orders of magnitude over other methods.
No evidence of their existence in these materials were observed. Limits of < 6
X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI
and liquid scintillator, respectively, were derived.These are the first results
in a research program whose goals are to develop techniques to measure trace
radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass
Spectrometr
Independent Eigenstates of Angular Momentum in a Quantum N-body System
The global rotational degrees of freedom in the Schr\"{o}dinger equation for
an -body system are completely separated from the internal ones. After
removing the motion of center of mass, we find a complete set of
independent base functions with the angular momentum . These are
homogeneous polynomials in the components of the coordinate vectors and the
solutions of the Laplace equation, where the Euler angles do not appear
explicitly. Any function with given angular momentum and given parity in the
system can be expanded with respect to the base functions, where the
coefficients are the functions of the internal variables. With the right choice
of the base functions and the internal variables, we explicitly establish the
equations for those functions. Only (3N-6) internal variables are involved both
in the functions and in the equations. The permutation symmetry of the wave
functions for identical particles is discussed.Comment: 24 pages, no figure, one Table, RevTex, Will be published in Phys.
Rev. A 64, 0421xx (Oct. 2001
Relativistic Mass Ejecta from Phase-transition-induced Collapse of Neutron Stars
We study the dynamical evolution of a phase-transition-induced collapse
neutron star to a hybrid star, which consists of a mixture of hadronic matter
and strange quark matter. The collapse is triggered by a sudden change of
equation of state, which result in a large amplitude stellar oscillation. The
evolution of the system is simulated by using a 3D Newtonian hydrodynamic code
with a high resolution shock capture scheme. We find that both the temperature
and the density at the neutrinosphere are oscillating with acoustic frequency.
However, they are nearly 180 out of phase. Consequently, extremely
intense, pulsating neutrino/antineutrino fluxes will be emitted periodically.
Since the energy and density of neutrinos at the peaks of the pulsating fluxes
are much higher than the non-oscillating case, the electron/positron pair
creation rate can be enhanced dramatically. Some mass layers on the stellar
surface can be ejected by absorbing energy of neutrinos and pairs. These mass
ejecta can be further accelerated to relativistic speeds by absorbing
electron/positron pairs, created by the neutrino and antineutrino annihilation
outside the stellar surface. The possible connection between this process and
the cosmological Gamma-ray Bursts is discussed.Comment: 40 pages, 11 figures, accepted for publication in JCA
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation
We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
Comparison of endosperm amyloplast development and degradation in waxy and non-waxy wheat
The waxy wheat shows special starch quality due to high amylopectin content. However, little information is available concerning the development and degradation of amyloplast from waxy wheat endosperm. To address this problem, waxy wheat variety, Yangnuo 1, and a non-waxy wheat variety, Yangmai 13, were chosen to investigate the development and degradation of endosperm amyloplast during wheat caryopsis development and germination stage respectively using histochemical staining and light microscopy. Changes of morphology, the soluble sugar and total starch content were indistinguishable in the process of caryopsis development of two wheat varieties. The developing endosperm of non-waxy was stained blue-black by I2-KI while the endosperm of waxy wheat was stained reddish-brown, but the pericarp of waxy and non-waxy wheat was stained blue-black. In contrast to nonwaxy wheat, endosperm amyloplast of waxy wheat had better development status and higher proportion of small amyloplast. During seed germination many small dissolution pores appeared on the surface of endosperm amyloplast and the pores became bigger and deeper until amyloplast disintegrated. The rate of degradation of waxy wheat endosperm amyloplast was faster than non-waxy wheat. Our results may also be helpful to the use of waxy starch in food and nonfood industry
- …
