1,373 research outputs found
Analysis of dissipation of a burst-type martensite transformation in a Fe-Mn alloy by internal friction measurements
Recently, we have proposed a theory to analyze the first-order phase transition (FOPT) in solids. In order to test the concept of the physics of dissipation during FOPT in solids, it is necessary to test the theory with different FOPT system. We study here a burst-type martensite transformation in a Fe-18.8% Mn alloy sample for this purpose. We investigate the characteristics of γ(fcc)⇌ɛ(hcp) transformation in this alloy and measure the dependence of internal friction (IF) during γ/ɛ transformation in varying rate of temperature Ṫ and vibration frequency ω. For free oscillations, the IF was defined to be Qδ-1=δ/π where δ is the logarithmic decrement. For general (forced) oscillations, IF is usually defined to be Qw-1=(1/2π)(ΔW/W), where ΔW is the dissipation over one cycle, while W is the maximum stored energy. During our analysis, the relation between Qδ-1 and Qw-1 is deduced. The parameter l (coupling factor between phase interface and oscillating stress) takes a small value (0.015–0.035) during PT, but takes a large value (0.86) during static state. The parameter n (exponent of rate for effective PT driving force) takes a large value 0.33 during heating and 0.47 during cooling. The physical meaning of n and l is discussed. The methodology introduced here appears to be an effective way of studying FOPT in solids. © 1996 The American Physical Society.published_or_final_versio
Characterization of the thermoelastic martensitic transformation in a NiTi alloy driven by temperature variation and external stress
In order to test the concept of the physics of dissipation during first-order phase transitions in solids, we measured the internal friction (Q-1) and the relative shear modulus (μ) during a thermoelastic martensitic transformation in a NiTi alloy. We adopted two approaches: temperature variation and application of external stress. This investigation of internal friction was carried out with various vibration frequencies ω, temperature variation rates Ṫ, and strain variation rates ɛ̇. The index l (coupling factor between phase interface and oscillating stress) and index n (rate exponent for the effective phase transformation driving force) have been calculated from the experimental data for each case and the values of l and n are about the same in the two (doped) NiTi samples, irrespective of whether the phase transition is driven by a temperature variation or stress induced process. We compare the values of n and l for the NiTi samples with that of the other samples (VO2 ceramics and FeMn alloys), reinforcing the previous physical interpretations of these indices. We believe the indices n and l are indeed fingerprints of first-order phase transitions in solids.published_or_final_versio
Localization Recall Precision (LRP): A New Performance Metric for Object Detection
Average precision (AP), the area under the recall-precision (RP) curve, is
the standard performance measure for object detection. Despite its wide
acceptance, it has a number of shortcomings, the most important of which are
(i) the inability to distinguish very different RP curves, and (ii) the lack of
directly measuring bounding box localization accuracy. In this paper, we
propose 'Localization Recall Precision (LRP) Error', a new metric which we
specifically designed for object detection. LRP Error is composed of three
components related to localization, false negative (FN) rate and false positive
(FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable
LRP error representing the best achievable configuration of the detector in
terms of recall-precision and the tightness of the boxes. In contrast to AP,
which considers precisions over the entire recall domain, Optimal LRP
determines the 'best' confidence score threshold for a class, which balances
the trade-off between localization and recall-precision. In our experiments, we
show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides
richer and more discriminative information than AP. We also demonstrate that
the best confidence score thresholds vary significantly among classes and
detectors. Moreover, we present LRP results of a simple online video object
detector which uses a SOTA still image object detector and show that the
class-specific optimized thresholds increase the accuracy against the common
approach of using a general threshold for all classes. At
https://github.com/cancam/LRP we provide the source code that can compute LRP
for the PASCAL VOC and MSCOCO datasets. Our source code can easily be adapted
to other datasets as well.Comment: to appear in ECCV 201
Super-Resolved Enhancement of a Single Image and Its Application in Cardiac MRI
Super-resolved image enhancement is of great importance in medical imaging. Conventional methods often require multiple low resolution (LR) images from different views of the same object or learning from large amount of training datasets to achieve success. However, in real clinical environments, these prerequisites are rarely fulfilled. In this paper, we present a self-learning based method to perform superresolution (SR) from a single LR input. The mappings between the given LR image and its downsampled versions are modeled using support vector regression on features extracted from sparse coded dictionaries, coupled with dual-tree complex wavelet transform based denoising. We demonstrate the efficacy of our method in application of cardiac MRI enhancement. Both quantitative and qualitative results show that our SR method is able to preserve fine textural details that can be corrupted by noise, and therefore can maintain crucial diagnostic information
Spin Caloritronics
This is a brief overview of the state of the art of spin caloritronics, the
science and technology of controlling heat currents by the electron spin degree
of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh,
S. Valenzuela and Y. Kimura, Oxford University Pres
A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Triple-Mode Cavity Bandpass Filter on Doublet with Controllable Transmission Zeros
© 2013 IEEE. On the basis of doublet and its properties, a class of multiple-mode narrow band bandpasss filter is designed and fabricated by simultaneously exploiting the three resonant modes in a single rectangular cavity: TE101, TE011, and TM110 modes. The input/output ports of the proposed filter are fed by coupling a microstrip line to a slot on the side wall of a rectangular cavity. Different modes are excited by changing the position and shape of the two slots at input and output of the rectangular cavity without any intra-cavity coupling. Besides three poles within the passband, a pair of transmission zeros (TZs) is achieved, which can be controlled independently by setting the positions of the two TZs at the lower and/or upper stopband. High stopband attenuation and high filtering selectivity are achieved by considerably allocating three transmission poles and two zeros. In order to verify the proposed theory, two filter prototypes are fabricated and measured
Characterisation of thermo-elastic Martensitic transformation in NiTi and FeMn alloys driven by temperature variation and external stress
Abstract no. D41.109published_or_final_versio
Investigation of Exomic Variants Associated with Overall Survival in Ovarian Cancer
BACKGROUND: While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, few associations have been reported with overall survival. In the absence of common prognostic genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer Association Consortium (OCAC). METHODS: The primary patient set (Set 1) included 14 independent EOC studies (4,293 patients) and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1,744 patients) and 114,620 variants. Because power to detect rare variants individually is reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped). RESULTS: No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (Pmeta = 1.1E-6, HRSet1 = 1.17, HRSet2 = 1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (Pmeta = 1.1E-6; Pcorrected = 0.01). CONCLUSIONS: Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival, although further study is needed. IMPACT: This study represents the first exome-wide association study of EOC survival to include rare variant analyses, and suggests that complementary single variant and gene-level analyses in large studies are needed to identify rare variants that warrant follow-up study
- …
