14,999 research outputs found
NCeSS Project : Data mining for social scientists
We will discuss the work being undertaken on the NCeSS data mining project, a one year project at the University of Manchester which began at the start of 2007, to develop data mining tools of value to the social science community. Our primary goal is to produce a
suite of data mining codes, supported by a web interface, to allow social scientists to mine their datasets in a straightforward way and hence, gain new insights into their data. In order to fully define the requirements, we are looking at a range of typical datasets to find out what
forms they take and the applications and algorithms that will be required. In this paper, we will describe a number of these datasets and will discuss how easily data mining techniques can be used to extract information from the data that would either not be possible or would be
too time consuming by more standard methods
A new look at a polar crown cavity as observed by SDO/AIA
Context.
The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere.
Aims.
We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process.
Methods.
We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb.
Results.
We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon).
Conclusions.
We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1
Polarimetric Properties of Flux-Ropes and Sheared Arcades in Coronal Prominence Cavities
The coronal magnetic field is the primary driver of solar dynamic events.
Linear and circular polarization signals of certain infrared coronal emission
lines contain information about the magnetic field, and to access this
information, either a forward or an inversion method must be used. We study
three coronal magnetic configurations that are applicable to polar-crown
filament cavities by doing forward calculations to produce synthetic
polarization data. We analyze these forward data to determine the
distinguishing characteristics of each model. We conclude that it is possible
to distinguish between cylindrical flux ropes, spheromak flux ropes, and
sheared arcades using coronal polarization measurements. If one of these models
is found to be consistent with observational measurements, it will mean
positive identification of the magnetic morphology that surrounds certain
quiescent filaments, which will lead to a greater understanding of how they
form and why they erupt.Comment: 22 pages, 8 figures, Solar Physics topical issue: Coronal Magnetis
Galactic constraints on supernova progenitor models
Aims. To estimate the mean masses of oxygen and iron ejected per each type of supernovae (SNe) event from observations of the elemental abundance patterns in the Galactic disk and constrain the relevant SNe progenitor models.
Methods. We undertake a statistical analysis of the radial abundance distributions in the Galactic disk within a theoretical framework for Galactic chemical evolution which incorporates the influence of spiral arms. This framework has been shown to recover the non-linear behaviour in radial gradients, the mean masses of oxygen and iron ejected during SNe explosions to be estimated, and constraints to be placed on SNe progenitor models.
Results. (i) The mean mass of oxygen ejected per core-collapse SNe (CC SNe) event (which are concentrated within spiral arms) is similar to 0.27 M-circle dot; (ii) the mean mass of iron ejected by tardy Type Ia SNe (SNeIa, whose progenitors are older/longer-lived stars with ages greater than or similar to 100 Myr and up to several Gyr, which do not concentrate within spiral arms) is similar to 0.58 M-circle dot; (iii) the upper mass of iron ejected by prompt SNeIa (SNe whose progenitors are younger/shorter-lived stars with ages less than or similar to 100 Myr, which are concentrated within spiral arms) is <= 0.23 M-circle dot per event; (iv) the corresponding mean mass of iron produced by CC SNe is <= 0.04 M-circle dot per event; (v) short-lived SNe (core-collapse or prompt SNeIa) supply similar to 85% of the Galactic disk's iron.
Conclusions. The inferred low mean mass of oxygen ejected per CC SNe event implies a low upper mass limit for the corresponding progenitors of similar to 23 M-circle dot, otherwise the Galactic disk would be overabundant in oxygen. This inference is the consequence of the non-linear dependence between the upper limit of the progenitor initial mass and the mean mass of oxygen ejected per CC SNe explosion. The low mean mass of iron ejected by prompt SNeIa, relative to the mass produced by tardy SNeIa (similar to 2.5 times lower), prejudices the idea that both sub-populations of SNeIa have the same physical nature. We suggest that, perhaps, prompt SNeIa are more akin to CC SNe, and discuss the implications of such a suggestion
Partially-erupting prominences: a comparison between observations and model-predicted observables
<p><b>Aims:</b> We investigate several partially-erupting prominences to study their relationship with other CME-associated phenomena and compare these observations with observables predicted by a model of partially-expelled-flux-ropes (Gibson & Fan 2006a, ApJ, 637, L65; 2006b, J. Geophys. Res., 111, 12103).</p>
<p><b>Methods:</b> We studied 6 selected events with partially-erupting prominences using multi-wavelength observations recorded by the Extreme-ultraviolet Imaging Telescope (EIT), Transition Region and Coronal Explorer (TRACE), Mauna Loa Solar Observatory (MLSO), Big Bear Solar Observatory (BBSO), and Soft X-ray Telescope (SXT). The observational features associated with partially-erupting prominences were then compared with the predicted observables from the model.</p>
<p><b>Results:</b> The partially-expelled-flux-rope (PEFR) model can explain the partial eruption of these prominences, and in addition predicts a variety of other CME-related observables that provide evidence of internal reconnection during eruption. We find that all of the partially-erupting prominences studied in this paper exhibit indirect evidence of internal reconnection. Moreover, all cases showed evidence of at least one observable unique to the PEFR model, e.g., dimmings external to the source region and/or a soft X-ray cusp overlying a reformed sigmoid.</p>
<p><b>Conclusions:</b> The PEFR model provides a plausible mechanism to explain the observed evolution of partially-erupting-prominence-associated CMEs in our study.</p>
Anomalous Nernst Effect in Dirac Semimetal Cd3As2
Dirac and Weyl semimetals display a host of novel properties. In
CdAs, the Dirac nodes lead to a protection mechanism that strongly
suppresses backscattering in zero magnetic field, resulting in ultrahigh
mobility ( 10 cm V s). In applied magnetic field,
an anomalous Nernst effect is predicted to arise from the Berry curvature
associated with the Weyl nodes. We report observation of a large anomalous
Nernst effect in CdAs. Both the anomalous Nernst signal and transport
relaxation time begin to increase rapidly at 50 K. This
suggests a close relation between the protection mechanism and the anomalous
Nernst effect. In a field, the quantum oscillations of bulk states display a
beating effect, suggesting that the Dirac nodes split into Weyl states,
allowing the Berry curvature to be observed as an anomalous Nernst effect.Comment: 13 pages, 7 figure
N-body simulations of the Magellanic Stream
A suite of high-resolution N-body simulations of the Magellanic Clouds --
Milky Way system are presented and compared directly with newly available data
from the HI Parkes All-Sky Survey (HIPASS). We show that the interaction
between Small and Large Magellanic Clouds results in both a spatial and
kinematical bifurcation of both the Stream and the Leading Arm. The spatial
bifurcation of the Stream is readily apparent in the HIPASS data, and the
kinematical bifurcation is also tentatively identified. This bifurcation
provides strong support for the tidal disruption origin for the Magellanic
Stream. A fiducial model for the Magellanic Clouds is presented upon completion
of an extensive parameter survey of the potential orbital configurations of the
Magellanic Clouds and the viable initial boundary conditions for the disc of
the Small Magellanic Cloud. The impact of the choice of these critical
parameters upon the final configurations of the Stream and Leading Arm is
detailed.Comment: Accepted by MNRAS, 07 Jun 2006. 14 pages, 14 figures, 3 tables. LaTeX
(mn2e.sty). File with decent resolution images (strongly recommended)
available at http://astronomy.swin.edu.au/~tconnors/publications/ .
References added; distance and HI-LOres difference figures added; clearer
figures; discussion added to, but conclusions unchange
Efficient FPGA implementation of high-throughput mixed radix multipath delay commutator FFT processor for MIMO-OFDM
This article presents and evaluates pipelined architecture designs for an improved high-frequency Fast Fourier
Transform (FFT) processor implemented on Field Programmable Gate Arrays (FPGA) for Multiple Input Multiple Output
Orthogonal Frequency Division Multiplexing (MIMO-OFDM). The architecture presented is a Mixed-Radix Multipath Delay
Commutator. The presented parallel architecture utilizes fewer hardware resources compared to Radix-2 architecture,
while maintaining simple control and butterfly structures inherent to Radix-2 implementations. The high-frequency
design presented allows enhancing system throughput without requiring additional parallel data paths common in
other current approaches, the presented design can process two and four independent data streams in parallel
and is suitable for scaling to any power of two FFT size N. FPGA implementation of the architecture demonstrated
significant resource efficiency and high-throughput in comparison to relevant current approaches within
literature. The proposed architecture designs were realized with Xilinx System Generator (XSG) and evaluated
on both Virtex-5 and Virtex-7 FPGA devices. Post place and route results demonstrated maximum frequency
values over 400 MHz and 470 MHz for Virtex-5 and Virtex-7 FPGA devices respectively
- …
