31,787 research outputs found
A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem
We consider solving the -regularized least-squares (-LS)
problem in the context of sparse recovery, for applications such as compressed
sensing. The standard proximal gradient method, also known as iterative
soft-thresholding when applied to this problem, has low computational cost per
iteration but a rather slow convergence rate. Nevertheless, when the solution
is sparse, it often exhibits fast linear convergence in the final stage. We
exploit the local linear convergence using a homotopy continuation strategy,
i.e., we solve the -LS problem for a sequence of decreasing values of
the regularization parameter, and use an approximate solution at the end of
each stage to warm start the next stage. Although similar strategies have been
studied in the literature, there have been no theoretical analysis of their
global iteration complexity. This paper shows that under suitable assumptions
for sparse recovery, the proposed homotopy strategy ensures that all iterates
along the homotopy solution path are sparse. Therefore the objective function
is effectively strongly convex along the solution path, and geometric
convergence at each stage can be established. As a result, the overall
iteration complexity of our method is for finding an
-optimal solution, which can be interpreted as global geometric rate
of convergence. We also present empirical results to support our theoretical
analysis
Feasibility studies of a converter-free grid-connected offshore hydrostatic wind turbine
Owing to the increasing penetration of renewable power generation, the modern power system faces great challenges in frequency regulations and reduced system inertia. Hence, renewable energy is expected to take over part of the frequency regulation responsibilities from the gas or hydro plants and contribute to the system inertia. In this article, we investigate the feasibility of frequency regulation by the offshore hydrostatic wind turbine (HWT). The simulation model is transformed from NREL (National Renewable Energy Laboratory) 5-MW gearbox-equipped wind turbine model within FAST (fatigue, aerodynamics, structures, and turbulence) code. With proposed coordinated control scheme and the hydrostatic transmission configuration of the HWT, the `continuously variable gearbox ratio' in turbulent wind conditions can be realised to maintain the constant generator speed, so that the HWT can be connected to the grid without power converters in-between. To test the performances of the control scheme, the HWT is connected to a 5-bus grid model and operates with different frequency events. The simulation results indicate that the proposed control scheme is a promising solution for offshore HWT to participated in frequency response in the modern power system
Intrinsic left-handed electromagnetic properties in anisotropic superconductors
Left-handed materials usually are realized in artificial subwavelength
structures. Here we show that some anisotropic superconductors, such as
, and
, are intrinsic left-handed materials. The
condition is that the plasma frequency in the axis, , and in the
plane, , and the operating frequency, , satisfy
. In addition should be smaller than the
superconducting energy gap to sustain superconductivity. We study the
reflection and transmission of electromagnetic waves, and reveal negative
refraction and backward wave with phase velocity opposite to the direction of
energy flux propagation. We also discuss possible approaches of improvement,
making these properties feasible for experimental validation. Being intrinsic
left-hand materials, the anisotropic superconductors are promising for
applications in novel electromagnetic devices in the terahertz frequency band.Comment: 5 pages and 2 figure
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
We consider the problem of minimizing the sum of two convex functions: one is
the average of a large number of smooth component functions, and the other is a
general convex function that admits a simple proximal mapping. We assume the
whole objective function is strongly convex. Such problems often arise in
machine learning, known as regularized empirical risk minimization. We propose
and analyze a new proximal stochastic gradient method, which uses a multi-stage
scheme to progressively reduce the variance of the stochastic gradient. While
each iteration of this algorithm has similar cost as the classical stochastic
gradient method (or incremental gradient method), we show that the expected
objective value converges to the optimum at a geometric rate. The overall
complexity of this method is much lower than both the proximal full gradient
method and the standard proximal stochastic gradient method
Flow-based Influence Graph Visual Summarization
Visually mining a large influence graph is appealing yet challenging. People
are amazed by pictures of newscasting graph on Twitter, engaged by hidden
citation networks in academics, nevertheless often troubled by the unpleasant
readability of the underlying visualization. Existing summarization methods
enhance the graph visualization with blocked views, but have adverse effect on
the latent influence structure. How can we visually summarize a large graph to
maximize influence flows? In particular, how can we illustrate the impact of an
individual node through the summarization? Can we maintain the appealing graph
metaphor while preserving both the overall influence pattern and fine
readability?
To answer these questions, we first formally define the influence graph
summarization problem. Second, we propose an end-to-end framework to solve the
new problem. Our method can not only highlight the flow-based influence
patterns in the visual summarization, but also inherently support rich graph
attributes. Last, we present a theoretic analysis and report our experiment
results. Both evidences demonstrate that our framework can effectively
approximate the proposed influence graph summarization objective while
outperforming previous methods in a typical scenario of visually mining
academic citation networks.Comment: to appear in IEEE International Conference on Data Mining (ICDM),
Shen Zhen, China, December 201
Projected Density Matrix Embedding Theory with Applications to the Two-Dimensional Hubbard Model
Density matrix embedding theory (DMET) is a quantum embedding theory for
strongly correlated systems. From a computational perspective, one bottleneck
in DMET is the optimization of the correlation potential to achieve
self-consistency, especially for heterogeneous systems of large size. We
propose a new method, called projected density matrix embedding theory
(p-DMET), which achieves self-consistency without needing to optimize a
correlation potential. We demonstrate the performance of p-DMET on the
two-dimensional Hubbard model.Comment: 25 pages, 8 figure
- …
