11,275 research outputs found
Antidiabetic effect of Tibetan medicine Tang-Kang-Fu-San on high-fat diet and streptozotocin-induced type 2 diabetic rats
The aim of this study was to investigate the antidiabetic effects of a Tibetan medicine, Tang-Kang-Fu-San (TKFS), on experimental type 2 diabetes mellitus (T2DM) rats and to explore its underlying mechanisms. Firstly two major chemical compositions of TKFS, gallic acid and curcumin, were characterized by HPLC fingerprint analysis. Next T2DM in rats was induced by high-fat diet and a low-dose streptozotocin (STZ 35 mg/kg). Then oral gavage administration of three different doses of TKFS (0.3 g/kg, 0.6 g/kg, and 1.2 g/kg) was given to T2DM rats. Experimental results showed that TKFS dramatically reduced the levels of fasting blood glucose, fasting blood insulin, triglyceride, total cholesterol, LDL cholesterol, and HDL cholesterol, even though it did not alter the animal body weight. The downregulation of phosphorylation-AKT (p-AKT) and glucose transporter-4 (GLUT4) in skeletal muscle of T2DM rats was restored and abnormal pathological changes in pancreas tissues were also improved. Our work showed that TKFS could alleviate diabetic syndromes, maintain the glucose homeostasis, and protect against insulin resistance in T2DM rats, and the improvement of AKT phosphorylation and GLUT4 translocation in skeletal muscle would be one of its possible underlying mechanisms
Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251
BACKGROUND: bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. METHODS: In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA) and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI), and infection with adenovirus expressing green fluorescent protein (Ad-GFP) at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. RESULTS: Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. CONCLUSION: To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA
Flow characteristics and intrinsic workability of IN718 superalloy
This study focuses on deformation characteristics of superalloy IN718 by formulation of a new flowstress model and detailed evaluation of intrinsic workability through the generation of three-dimensional (3D) processing maps with the support of optical microstructural observations. Based on thermomechanical simulation tests using a Gleeble-1500 machine, the flow stress model for superalloy IN718 was built and the flow stress throughout the entire deformation process was described by a peak stress only depending on Zener–Hollomon parameter and strain. The developed model exhibited the strain softening due to dynamic recrystallization (DRX). The intrinsic workability was further investigated by constructing 3D processing maps. The 3D processing maps described the variations of the efficiency of power dissipation and flow instability domains as a function of strain rate, temperature and strain, from which the favourite deformation conditions for thermomechanical processing of IN718 can be established
Genetic polymorphisms in plasminogen activator inhibitor-1 predict susceptibility to steroid-induced osteonecrosis of the femoral head in Chinese population
BACKGROUND: Steroid usage has been considered as a leading cause of non-traumatic osteonecrosis of the femoral head (ONFH), which is involved in hypo-fibrinolysis and blood supply interruption. Genetic polymorphisms in plasminogen activator inhibitor-1 (PAI-1) have been demonstrated to be associated with ONFH risk in several populations. However, this relationship has not been established in Chinese population. The aim of this study was to investigate the association of PAI-1 gene polymorphisms with steroid-induced ONFH in a large cohort of Chinese population. METHODS: A case–control study was conducted, which included 94 and 106 unrelated patients after steroid administration recruited from 14 provinces in China, respectively. Two SNPs (rs11178 and rs2227631) within PAI-1 were genotyped using Sequenom MassARRAY system. RESULTS: rs2227631 SNP was significantly associated with steroid-induced ONFH group in codominant (P = 0.04) and recessive (P = 0.02) models. However, there were no differences found in genotype frequencies of rs11178 SNP between controls and patients with steroid-induced ONFH (all P > 0.05). CONCLUSIONS: Our data offer the convincing evidence for the first time that rs2227631 SNP of PAI-1 may be associated with the risk of steroid-induced ONFH, suggesting that the genetic variations of this gene may play an important role in the disease development. VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1569909986109783
Achyranthes bidentata extract exerts osteoprotective effects on steroid-induced osteonecrosis of the femoral head in rats by regulating RANKL/RANK/OPG signaling
The Effectiveness of Tepid Sponge Bath with 32oc and 37oc to Decrease Body Temperature at Toddler with Fever
Introduction: Tepid sponge bath is a therapeutic bath by washing all around of the body with warm water to decrease body temperature. Warm water that used were 32oC (nail warm) and 37oC (warm). The aimed of this study was to compare the effectivity of tepid sponge bath with 32oC and 37oC warm water on decreasing body temperature at toddler with fever. Method: A quasy experimental pre post test design was used in this study. The population was toddler who had body temperature ≥38oC which treated in anggrek pediatric room dr. Iskak public hospital Tulungagung. There were 26 respondents recruited by using purposive sampling technique and divided into two group, each of 13 respondents received tepid sponge bath with 32oC and others received tepid sponge bath with 37oC warm water. The independent variable was tepid sponge bath and dependent variable was body temperature. Data were collected by using digital termometere and noted in respondent observation, then analyzed by using Paired t-Test and Mann Withney U-Test. Result: The result showed that there was an effectivity on decreasing body temperature by giving tepid sponge bath with 32oC and 37oC warm water with significance level p=0.000 and there was a difference decreasing body temperature among both of them with significance level p=0.016. Discussion: It can be concluded that tepid sponge bath with 37oC warm water was more effective than tepid sponge bath with 32oC warm water. Further studies should be observed the effectivity of tepid sponge bath with more specific age, fever character and more time and respondent
- …
