53,238 research outputs found
Hypervelocity binary stars: smoking gun of massive binary black holes
The hypervelocity stars recently found in the Galactic halo are expelled from
the Galactic center through interactions between binary stars and the central
massive black hole or between single stars and a hypothetical massive binary
black hole. In this paper, we demonstrate that binary stars can be ejected out
of the Galactic center with velocities up to 10^3 km/s, while preserving their
integrity, through interactions with a massive binary black hole. Binary stars
are unlikely to attain such high velocities via scattering by a single massive
black hole or through any other mechanisms. Based on the above theoretical
prediction, we propose a search for binary systems among the hypervelocity
stars. Discovery of hypervelocity binary stars, even one, is a definitive
evidence of the existence of a massive binary black hole in the Galactic
center.Comment: 5 pages, 3 figures, shortened version, ApJL in pres
Random-Singlet Phase in Disordered Two-Dimensional Quantum Magnets
We study effects of disorder (randomness) in a 2D square-lattice
quantum spin system, the - model with a 6-spin interaction
supplementing the Heisenberg exchange . In the absence of disorder the
system hosts antiferromagnetic (AFM) and columnar valence-bond-solid (VBS)
ground states. The VBS breaks symmetry, and in the presence of
arbitrarily weak disorder it forms domains. Using QMC simulations, we
demonstrate two kinds of such disordered VBS states. Upon dilution, a removed
site leaves a localized spin in the opposite sublattice. These spins form AFM
order. For random interactions, we find a different state, with no order but
algebraically decaying mean correlations. We identify localized spinons at the
nexus of domain walls between different VBS patterns. These spinons form
correlated groups with the same number of spinons and antispinons. Within such
a group, there is a strong tendency to singlet formation, because of
spinon-spinon interactions mediated by the domain walls. Thus, no long-range
AFM order forms. We propose that this state is a 2D analog of the well-known 1D
random singlet (RS) state, though the dynamic exponent in 2D is finite. By
studying the T-dependent magnetic susceptibility, we find that varies, from
at the AFM--RS phase boundary and larger in the RS phase The RS state
discovered here in a system without geometric frustration should correspond to
the same fixed point as the RS state recently proposed for frustrated systems,
and the ability to study it without Monte Carlo sign problems opens up
opportunities for further detailed characterization of its static and dynamic
properties. We also discuss experimental evidence of the RS phase in the
quasi-two-dimensional square-lattice random-exchange quantum magnets
SrCuTeWO.Comment: 31 pages, 29 figures; substantial additions in v2; additional
analysis in v
Random-singlet phase in disordered two-dimensional quantum magnets
We study effects of disorder (randomness) in a 2D square-lattice S=1/2 quantum spin system, the J-Q model with a 6-spin interaction Q supplementing the Heisenberg exchange J. In the absence of disorder the system hosts antiferromagnetic (AFM) and columnar valence-bond-solid (VBS) ground states. The VBS breaks Z4 symmetry, and in the presence of arbitrarily weak disorder it forms domains. Using QMC simulations, we demonstrate two kinds of such disordered VBS states. Upon dilution, a removed site leaves a localized spin in the opposite sublattice. These spins form AFM order. For random interactions, we find a different state, with no order but algebraically decaying mean correlations. We identify localized spinons at the nexus of domain walls between different VBS patterns. These spinons form correlated groups with the same number of spinons and antispinons. Within such a group, there is a strong tendency to singlet formation, because of spinon-spinon interactions mediated by the domain walls. Thus, no long-range AFM order forms. We propose that this state is a 2D analog of the well-known 1D random singlet (RS) state, though the dynamic exponent z in 2D is finite. By studying the T-dependent magnetic susceptibility, we find that z varies, from z=2 at the AFM--RS phase boundary and larger in the RS phase The RS state discovered here in a system without geometric frustration should correspond to the same fixed point as the RS state recently proposed for frustrated systems, and the ability to study it without Monte Carlo sign problems opens up opportunities for further detailed characterization of its static and dynamic properties. We also discuss experimental evidence of the RS phase in the quasi-two-dimensional square-lattice random-exchange quantum magnets Sr2CuTe1−xWxO6.Accepted manuscrip
The Educational Achievement of Pupils with Immigrant and Native Mothers: Evidence from Taiwan
This paper takes advantage of the Taiwan Assessment of Student Achievement data set to empirically evaluate whether the test score differentials between pupils with immigrant and native mothers are substantial across subjects, grades and years. Our results show that there exist test score differentials between the two groups after controlling for the students' individual characteristics and family background. The Chinese, Math and English subjects exhibit larger test score gaps relative to Science and Society. We also find that the academic gaps between native students and pupils with mothers from Southeast Asian countries tend to widen, while the students' performance is about the same as that for native students if their mothers are from mainland China, confirming that the language proficiency of immigrant mothers significantly affects pupils' learning. Our empirical results may suggest that remedial teaching (or an equivalent preferential policy) for the lower-grade pupils with immigrant mothers might be required to create a fair environment for learning, and such a policy should take the nationality of those foreign mothers into account
- …
