307 research outputs found

    Measuring the vulnerability of an energy intensive sector to the EU ETS under a life cycle approach: The case of the chlor-alkali industry

    Get PDF
    The EU Emissions Trading System (EU ETS), which is a cornerstone of the EU?s policy to combat climate change, has been criticised by its effects on the competitiveness of intensive energy demanding industries, and in particular, of the chlor-alkali sector. The main chlorine application in Europe is the production of polyvinyl chloride (PVC) from ethylene dichloride (EDC) as intermediate. Since chlorine is mainly traded in terms of derivatives, the aim of this work is to assess the vulnerability of the European chlor-alkali industry to chlorine replacement by imported EDC. An Energetic, Economic and Environmental Sustainability Assessment (EEESA) methodology is proposed based on the main variables affecting EDC production. Moreover, the influence of the EU ETS compensation measures and the emission allowance price in the current (mercury, diaphragm and membrane) and emergent (oxygen-depolarized cathodes (ODC)) technologies is studied. The most vulnerable scenarios become mercury and diaphragm technologies due to energy consumption. However, the salt price dependency on the quality requirements substantially influences the EEESA results. This analysis also shows the importance of hydrogen valorisation, whose major impact is observed in ODC scenario.This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) project CTM2013-43539-R and the Cantabrian University Project “Development and application of tools for the environmental management of processes and products under a life cycle perspective”. Jara Laso also thanks the Ministry of Economy and Competitiveness of the Spanish Government for the financial support through the research fellowship BES-2014-069368

    Role of oxidative stress on diesel-enhanced influenza infection in mice

    Get PDF
    Numerous studies have shown that air pollutants, including diesel exhaust (DE), reduce host defenses, resulting in decreased resistance to respiratory infections. This study sought to determine if DE exposure could affect the severity of an ongoing influenza infection in mice, and examine if this could be modulated with antioxidants. BALB/c mice were treated by oropharyngeal aspiration with 50 plaque forming units of influenza A/HongKong/8/68 and immediately exposed to air or 0.5 mg/m3 DE (4 hrs/day, 14 days). Mice were necropsied on days 1, 4, 8 and 14 post-infection and lungs were assessed for virus titers, lung inflammation, immune cytokine expression and pulmonary responsiveness (PR) to inhaled methacholine. Exposure to DE during the course of infection caused an increase in viral titers at days 4 and 8 post-infection, which was associated with increased neutrophils and protein in the BAL, and an early increase in PR. Increased virus load was not caused by decreased interferon levels, since IFN-β levels were enhanced in these mice. Expression and production of IL-4 was significantly increased on day 1 and 4 p.i. while expression of the Th1 cytokines, IFN-γ and IL-12p40 was decreased. Treatment with the antioxidant N-acetylcysteine did not affect diesel-enhanced virus titers but blocked the DE-induced changes in cytokine profiles and lung inflammation. We conclude that exposure to DE during an influenza infection polarizes the local immune responses to an IL-4 dominated profile in association with increased viral disease, and some aspects of this effect can be reversed with antioxidants

    Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice.

    Get PDF
    Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, SRM 2975 has been tested thoroughly for its genotoxicity. In the present study, we combined physical and chemical analyses of both DEP samples with pulmonary toxicity testing in CD-1 mice to compare the two materials and to make associations between their physicochemical properties and their biologic effects. A-DEPs had more than 10 times the amount of extractable organic material and less than one-sixth the amount of elemental carbon compared with SRM 2975. Aspiration of 100 micro g of either DEP sample in saline produced mild acute lung injury; however, A-DEPs induced macrophage influx and activation, whereas SRM 2975 enhanced polymorphonuclear cell inflammation. A-DEPs stimulated an increase in interleukin-6 (IL-6), tumor necrosis factor alpha, macrophage inhibitory protein-2, and the TH2 cytokine IL-5, whereas SRM 2975 only induced significant levels of IL-6. Fractionated organic extracts of the same quantity of DEPs (100 micro g) did not have a discernable effect on lung responses and will require further study. The disparate results obtained highlight the need for chemical, physical, and source characterization of particle samples under investigation. Multidisciplinary toxicity testing of diesel emissions derived from a variety of generation and collection conditions is required to meaningfully assess the health hazards associated with exposures to DEPs. Key words: automobile, diesel exhaust particles, forklift, mice, pulmonary toxicity, SRM 2975

    Mutagenicity and Pollutant Emission Factors of Solid-Fuel Cookstoves: Comparison with Other Combustion Sources

    Get PDF
    BACKGROUND: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. OBJECTIVE: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions. METHODS: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. RESULTS: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58-0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator. CONCLUSIONS: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality. CITATION: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter JJ, Higuchi M, DeMarini DM. 2016. Mutagenicity and pollutant emission factors of solid-fuel cookstoves: comparison with other combustion sources. Environ Health Perspect 124:974-982; http://dx.doi.org/10.1289/ehp.1509852
    corecore