505 research outputs found

    LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed

    Full text link
    Running off-site software middleboxes at third-party service providers has been a popular practice. However, routing large volumes of raw traffic, which may carry sensitive information, to a remote site for processing raises severe security concerns. Prior solutions often abstract away important factors pertinent to real-world deployment. In particular, they overlook the significance of metadata protection and stateful processing. Unprotected traffic metadata like low-level headers, size and count, can be exploited to learn supposedly encrypted application contents. Meanwhile, tracking the states of 100,000s of flows concurrently is often indispensable in production-level middleboxes deployed at real networks. We present LightBox, the first system that can drive off-site middleboxes at near-native speed with stateful processing and the most comprehensive protection to date. Built upon commodity trusted hardware, Intel SGX, LightBox is the product of our systematic investigation of how to overcome the inherent limitations of secure enclaves using domain knowledge and customization. First, we introduce an elegant virtual network interface that allows convenient access to fully protected packets at line rate without leaving the enclave, as if from the trusted source network. Second, we provide complete flow state management for efficient stateful processing, by tailoring a set of data structures and algorithms optimized for the highly constrained enclave space. Extensive evaluations demonstrate that LightBox, with all security benefits, can achieve 10Gbps packet I/O, and that with case studies on three stateful middleboxes, it can operate at near-native speed.Comment: Accepted at ACM CCS 201

    Desire and Subjectivity in Twentieth Century American Poetry

    Get PDF
    Many studies of American poetry view modernism as an eruption of formal and technical innovations that respond to momentous cultural and political changes, but few attempt to consider the flow and restriction of desire among these changes. This dissertation argues that American modernist poets construct models of desire based on the rejection of sensual objects and a subsequent redirection of desire toward the self and the creative mind. In addition, these models of desire result in a conception of subjects as whole, discrete, and isolated. In the first chapter, I distinguish between Walt Whitman's sensualist model of desire and Emily Dickinson's intellectualist mode that defers satisfaction. I contend that Ezra Pound, Wallace Stevens, T. S. Eliot, and H.D. (Hilda Doolittle) develop from Dickinson's perspective of deferred satisfaction to an outright rejection of physical desire. The manner and implications of this reorganization of desire differ among these poets, as do the poetic techniques they utilize, but underlying these differences is a related refusal to pursue objects of sensual pleasure. Pound withdraws desire from the world by turning objects into static images; desire is then able to flourish in the creative mind. Stevens allows the imagination to remake the world, creating manifold abstractions for subjects who otherwise reject sensuality. The second chapter provides a close reading of Eliot's The Waste Land to show how the presentation of sexual futility leads to a poetic experience of separation as a means of spiritual reformation. The third chapter reads H.D.'s Trilogy as a contemplation of the destruction of World War II and the persistent, unified self that outlasts it. Rather than interacting with this devastated world, H.D. insists that desire must be redirected toward the effort of spiritual redemption. In the fourth chapter, Elizabeth Bishop begins to question the deliberate rejection of the world. She sees a world that reasserts itself and imagines a subject who, though still yearning for unity, must admit an inescapably physical environment. The conclusion considers how postwar American poets continue to dissolve the subject and release desire into the world, emphasizing the present moment rather than a lasting, unified self

    XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets

    Get PDF
    Building trustless cross-blockchain trading protocols is challenging. Centralized exchanges thus remain the preferred route to execute transfers across blockchains. However, these services require trust and therefore undermine the very nature of the blockchains on which they operate. To overcome this, several decentralized exchanges have recently emerged which offer support for atomic cross-chain swaps (ACCS). ACCS enable the trustless exchange of cryptocurrencies across blockchains, and are the only known mechanism to do so. However, ACCS suffer significant limitations; they are slow, inefficient and costly, meaning that they are rarely used in practice. We present XCLAIM: the first generic framework for achieving trustless and efficient cross-chain exchanges using cryptocurrencybacked assets (CBAs). XCLAIM offers protocols for issuing, transferring, swapping and redeeming CBAs securely in a non-interactive manner on existing blockchains. We instantiate XCLAIM between Bitcoin and Ethereum and evaluate our implementation; it costs less than USD 0.50 to issue an arbitrary amount of Bitcoin-backed tokens on Ethereum. We show XCLAIM is not only faster, but also significantly cheaper than atomic cross-chain swaps. Finally, XCLAIM is compatible with the majority of existing blockchains without modification, and enables several novel cryptocurrency applications, such as crosschain payment channels and efficient multi-party swaps

    A Quantum Theory of Temporally Mismatched Homodyne Measurements with Applications to Optical Frequency Comb Metrology

    Full text link
    The fields of precision timekeeping and spectroscopy increasingly rely on optical frequency comb interferometry. However, comb-based measurements are not described by existing quantum theory because they exhibit both large mode mismatch and finite strength local oscillators. To establish this quantum theory, we derive measurement operators for homodyne with arbitrary mode overlap. These operators are a combination of quadrature and intensity-like measurements, which inform a filter that maximizes the quadrature measurement signal-to-noise ratio. Furthermore, these operators establish a foundation to extend frequency-comb interferometry to a wide range of scenarios, including metrology with nonclassical states of light.Comment: 5 pages plus appendice

    Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene

    Get PDF
    Journal ArticleDecreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 "A" allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol- stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity

    Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    Get PDF
    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 × 10-11), rs12454712 (BCL2; P = 2.7 × 10-8), and rs10506418 (FAM19A2; P = 1.9 × 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci

    Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation

    Get PDF
    Atrial fibrillation affects more than 33 million people worldwide and increases the risk of stroke, heart failure, and death. Fourteen genetic loci have been associated with atrial fibrillation in European and Asian ancestry groups. To further define the genetic basis of atrial fibrillation, we performed large-scale, trans-ancestry meta-analyses of common and rare variant association studies. The genome-wide association studies (GWAS) included 17,931 individuals with atrial fibrillation and 115,142 referents; the exome-wide association studies (ExWAS) and rare variant association studies (RVAS) involved 22,346 cases and 132,086 referents. We identified 12 new genetic loci that exceeded genome-wide significance, implicating genes involved in cardiac electrical and structural remodeling. Our results nearly double the number of known genetic loci for atrial fibrillation, provide insights into the molecular basis of atrial fibrillation, and may facilitate the identification of new potential targets for drug discovery

    Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney.

    Get PDF
    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation
    corecore