23 research outputs found

    HtrA2/Omi Terminates Cytomegalovirus Infection and Is Controlled by the Viral Mitochondrial Inhibitor of Apoptosis (vMIA)

    Get PDF
    Viruses encode suppressors of cell death to block intrinsic and extrinsic host-initiated death pathways that reduce viral yield as well as control the termination of infection. Cytomegalovirus (CMV) infection terminates by a caspase-independent cell fragmentation process after an extended period of continuous virus production. The viral mitochondria-localized inhibitor of apoptosis (vMIA; a product of the UL37x1 gene) controls this fragmentation process. UL37x1 mutant virus-infected cells fragment three to four days earlier than cells infected with wt virus. Here, we demonstrate that infected cell death is dependent on serine proteases. We identify mitochondrial serine protease HtrA2/Omi as the initiator of this caspase-independent death pathway. Infected fibroblasts develop susceptibility to death as levels of mitochondria-resident HtrA2/Omi protease increase. Cell death is suppressed by the serine protease inhibitor TLCK as well as by the HtrA2-specific inhibitor UCF-101. Experimental overexpression of HtrA2/Omi, but not a catalytic site mutant of the enzyme, sensitizes infected cells to death that can be blocked by vMIA or protease inhibitors. Uninfected cells are completely resistant to HtrA2/Omi induced death. Thus, in addition to suppression of apoptosis and autophagy, vMIA naturally controls a novel serine protease-dependent CMV-infected cell-specific programmed cell death (cmvPCD) pathway that terminates the CMV replication cycle

    Cytomegalovirus Hijacks CX3CR1hi Patrolling Monocytes as Immune-Privileged Vehicles for Dissemination in Mice

    Get PDF
    SummaryPeripheral blood myelomonocytic cells are important for cytomegalovirus dissemination to distal organs such as salivary glands where persistent replication and shedding dictates transmission patterns. We find that this process is markedly enhanced by the murine cytomegalovirus (MCMV)-encoded CC chemokine, MCK2, which promotes recruitment of CX3CR1hi patrolling monocytes to initial infection sites in the mouse. There, these cells become infected and traffic via the bloodstream to distal sites. In contrast, inflammatory monocytes, the other major myelomonocytic subset, remain virus negative. CX3CR1 deficiency prevents patrolling monocyte migration on the vascular endothelium and interrupts MCMV dissemination to the salivary glands independent of antiviral NK and T cell immune control. In this manner, CX3CR1hi patrolling monocytes serve as immune-privileged vehicles to transport MCMV via the bloodstream to distal organs. MCMV commandeers patrolling monocytes to mediate systemic infection and seed a persistent reservoir essential for horizontal transmission

    Nerve Growth Factor, But Not Epidermal Growth Factor, Increases Fra-2 Expression and Alters Fra-2/JunD Binding to AP-1 and CREB Binding Elements in Pheochromocytoma (PC12) Cells

    Full text link
    In pheochromocytoma (PC12) cells nerve growth factor (NGF) and epidermal growth factor (EGF) activate similar receptor tyrosine kinase signaling pathways but evoke strikingly different biological outcomes: NGF induces differentiation and EGF acts as a mitogen. A novel approach was developed for identifying transcription factor activities associated with NGF-activated, but not EGF-activated, signaling, using random oligonucleotide clones from a DNA recognition library to isolate specific DNA binding proteins from PC12 nuclear extracts. A protein complex from NGF-treated, but not EGF-treated, cells was identified that exhibits increased mobility and DNA binding activity in gel mobility shift assays. The binding complex was identified in supershift assays as Fra-2/JunD. The clones used as probes contain either AP-1 or cAMP response element binding (CREB) recognition elements. Time course experiments revealed further differences in NGF and EGF signaling in PC12 cells. NGF elicits a more delayed and sustained ERK phosphorylation than EGF, consistent with previous reports. Both growth factors transiently inducec-fos, but NGF evokes a greater response than EGF. NGF specifically increases Fra-1 and Fra-2 levels at 4 and 24 hr. The latter is represented in Western blots by bands in the 40–46 kDa range. NGF, but not EGF, enhances the upper bands, corresponding to phosphorylated Fra-2. These findings suggest that prolonged alterations in Fra-2 and subsequent increases in Fra-2/JunD binding to AP-1 and CREB response elements common among many gene promoters could serve to trigger broadly an NGF-specific program of gene expression.</jats:p

    Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways

    Full text link
    Significance Caspase-8–mediated apoptotic and receptor-interacting protein (RIP)-dependent necroptotic signaling pathways are recognized host defense mechanisms that act by eliminating virus-infected cells. Cytomegalovirus-encoded inhibitors of apoptosis and necroptosis sustain infection and pathogenesis by preventing specific programmed cell death pathways. In the absence of viral inhibitors, combined apoptotic–necroptotic cell death signaling halts infection, preventing the virus from gaining a foothold in the host. We describe natural cooperation between apoptosis and necroptosis pathways in macrophages and within the host, resulting in robust proinflammatory cytokine responses not observed when infected cells die by either apoptosis or necroptosis alone. Thus, apoptosis combined with necroptosis serves a dual role in limiting herpesvirus persistence in the host.</jats:p

    RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition

    Full text link
    Significance The protein kinase receptor interacting protein 1 controls signaling via death receptors, Toll-like receptors, and retinoic acid-inducible gene 1-like receptors, dictating inflammatory outcomes as broad as cytokine activation and cell death. RIP1 makes a vital contribution during development, evident from the fact that RIP1-deficient mice die soon after birth. Here, we show that a kinase-independent function of RIP1 dampens the consequences of innate immune cell death. During parturition, RIP1 prevents the lethal consequences of RIP3-dependent necroptosis as well as caspase 8 (Casp8)-dependent apoptosis. In contrast to the RIP1-deficient phenotype, mice lacking a combination of RIP1, RIP3, and Casp8 are born and mature into viable, fertile, and immunocompetent adults. These results demonstrate the important protective role of RIP1 against physiologic and microbial death cues encountered at birth.</jats:p
    corecore