7,937 research outputs found
Physics of SNeIa and Cosmology
We give an overview of the current understanding of Type Ia supernovae
relevant for their use as cosmological distance indicators. We present the
physical basis to understand their homogeneity of the observed light curves and
spectra and the observed correlations. This provides a robust method to
determine the Hubble constant, 67 +- 8 (2 sigma) km/Mpc/sec, independently from
primary distance indicators.
We discuss the uncertainties and tests which include SNe Ia based distance
determinations prior to delta-Ceph. measurements for the host galaxies. Based
on detailed models, we study the small variations from homogeneities and their
observable consequences. In combination with future data, this underlines the
suitability and promises the refinements needed to determine accurate relative
distances within 2 to 3 % and to use SNe Ia for high precision cosmology.Comment: to be published in "Stellar Candles", eds. Gieren et al. Lecture
Notes in Physics (http://link.springer.de/series/lnpp
Single stage experimental evaluation of slotted rotor and stator blading. Part I - Analysis and design
Analysis and design of slotted rotor and stator blading for application to compressors in advanced airbreathing propulsion system
Strong Gravitational Lensing and Dark Energy Complementarity
In the search for the nature of dark energy most cosmological probes measure
simple functions of the expansion rate. While powerful, these all involve
roughly the same dependence on the dark energy equation of state parameters,
with anticorrelation between its present value w_0 and time variation w_a.
Quantities that have instead positive correlation and so a sensitivity
direction largely orthogonal to, e.g., distance probes offer the hope of
achieving tight constraints through complementarity. Such quantities are found
in strong gravitational lensing observations of image separations and time
delays. While degeneracy between cosmological parameters prevents full
complementarity, strong lensing measurements to 1% accuracy can improve
equation of state characterization by 15-50%. Next generation surveys should
provide data on roughly 10^5 lens systems, though systematic errors will remain
challenging.Comment: 7 pages, 5 figure
The time evolution of cosmological redshift as a test of dark energy
The variation of the expansion rate of the Universe with time produces an
evolution in the cosmological redshift of distant sources (for example quasar
Lyman- absorption lines), that might be directly observed by future
ultra stable, high-resolution spectrographs (such as CODEX) coupled to
extremely large telescopes (such as European Southern Observatory's Extremely
Large Telescope, ELT). This would open a new window to explore the physical
mechanism responsible for the current acceleration of the Universe. We
investigate the evolution of cosmological redshift from a variety of dark
energy models, and compare it with simulated data. We perform a Fisher matrix
analysis and discuss the prospects for constraining the parameters of these
models and for discriminating among competing candidates. We find that, because
of parameter degeneracies, and of the inherent technical difficulties involved
in this kind of observations, the uncertainties on parameter reconstruction can
be rather large unless strong external priors are assumed. However, the method
could be a valuable complementary cosmological tool, and give important
insights on the dynamics of dark energy, not obtainable using other probes.Comment: 9 pages, 2 figures. Matching published versio
The Effect of Repetitive Feedings on the Acceptability of Selected Metabolic Diets
Effect of repetitive feeding over extended periods of time on acceptability of selected metabolic diet
Competition between Pressure and Gravity Confinement in Lyman-Alpha Forest Observations
A break in the distribution function of Ly clouds (at a typical
redshift of ) has been reported by Petitjean et al. (1993). This feature
is what would be expected from a transition between pressure confinement and
gravity confinement (as predicted in Charlton, Salpeter, and Hogan (1993)). The
column density at which the feature occurs has been used to determine the
external confining pressure, , which could be
due to a hot, intergalactic medium. For models that provide a good fit to the
data, the contribution of the gas in clouds to is small. The specific
shape of the distribution function at the transition (predicted by models to
have a non-monotonic slope) can serve as a diagnostic of the distribution of
dark matter around Ly forest clouds, and the present data already
eliminate certain models.Comment: 10 pages plain TeX, 2 figures available upon request, submitted to
ApJ Letters, PSU-jc-
Parametric resonance for antineutrino conversions using LSND best-fit results with a 3+1 flavor scheme
An analytical solution to a parametric resonance effect for antineutrinos in
a 3+1 flavor (active+sterile) scheme using multiple non-adiabatic density
shifts is presented. We derive the conditions for a full flavor conversion for
antineutrino oscillations
under the assumption that LSND best-fits for the mixing
parameters are valid in a short-baseline accelerator experiment. We show that
the parametric resonance effect can be exploited to increase the effective
antineutrino oscillation length by a factor of 10-40, thus sustaining a high
oscillation probability for a much longer period of time than in the vacuum
scenario. We propose a realistic experimental setup that could probe for this
effect which leaves a signature in terms of a specific oscillation probability
profile. Moreover, since the parametric resonance effect is valid in any 2 or
1+1 flavor approximation, our results could be suggestive for future
short-baseline accelerator neutrino detection experiments.Comment: 6 pages, 4 figure
Surface-micromachined Ta–Si–N beams for use in micromechanics
Realization and characterization of free-standing surface-microstructures based on Ta-Si-N films are presented. Due to their significant physical and chemical properties, such ternary films are promising candidates for application in microelectromechanical devices
Exploring the Expanding Universe and Dark Energy using the Statefinder Diagnostic
The coming few years are likely to witness a dramatic increase in high
quality Sn data as current surveys add more high redshift supernovae to their
inventory and as newer and deeper supernova experiments become operational.
Given the current variety in dark energy models and the expected improvement in
observational data, an accurate and versatile diagnostic of dark energy is the
need of the hour. This paper examines the Statefinder diagnostic in the light
of the proposed SNAP satellite which is expected to observe about 2000
supernovae per year. We show that the Statefinder is versatile enough to
differentiate between dark energy models as varied as the cosmological constant
on the one hand, and quintessence, the Chaplygin gas and braneworld models, on
the other. Using SNAP data, the Statefinder can distinguish a cosmological
constant () from quintessence models with and Chaplygin gas
models with at the level if the value of \om is
known exactly. The Statefinder gives reasonable results even when the value of
\om is known to only accuracy. In this case, marginalizing over
\om and assuming a fiducial LCDM model allows us to rule out quintessence
with and the Chaplygin gas with (both at
). These constraints can be made even tighter if we use the
Statefinders in conjunction with the deceleration parameter. The Statefinder is
very sensitive to the total pressure exerted by all forms of matter and
radiation in the universe. It can therefore differentiate between dark energy
models at moderately high redshifts of z \lleq 10.Comment: 21 pages, 17 figures. Minor typos corrected to agree with version
published in MNRAS. Results unchange
Evaluation of trends in derived snowfall and rainfall across Eurasia and linkages with discharge to the Arctic Ocean
To more fully understand the role of precipitation in observed increases in freshwater discharge to the Arctic Ocean, data from a new archive of bias-adjusted precipitation records for the former USSR (TD9813), along with the CRU and Willmott-Matsuura data sets, were examined for the period 1936–1999. Across the six largest Eurasian river basins, snowfall derived from TD9813 exhibits a strongly significant increase until the late 1950s and a moderately significant decrease thereafter. A strongly significant decline in derived rainfall is also noted. Spatially, snowfall increases are found primarily across north-central Eurasia, an area where the rainfall decreases are most prominent. Although no significant change is determined in Eurasian-basin snowfall over the entire 64 year period, we note that interpolation from early, uneven station networks causes an overestimation of spatial precipitation, and that the local snowfall trends determined from gridded TD9813 data are likely underestimated. Yet, numerous uncertainties in historical Arctic climate data and the sparse, irregular nature of Arctic station networks preclude a confident assessment of precipitation-discharge linkages during the period of reported discharge trends
- …
