42,190 research outputs found
Convolutional compressed sensing using deterministic sequences
This is the author's accepted manuscript (with working title "Semi-universal convolutional compressed sensing using (nearly) perfect sequences"). The final published article is available from the link below. Copyright @ 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.In this paper, a new class of orthogonal circulant matrices built from deterministic sequences is proposed for convolution-based compressed sensing (CS). In contrast to random convolution, the coefficients of the underlying filter are given by the discrete Fourier transform of a deterministic sequence with good autocorrelation. Both uniform recovery and non-uniform recovery of sparse signals are investigated, based on the coherence parameter of the proposed sensing matrices. Many examples of the sequences are investigated, particularly the Frank-Zadoff-Chu (FZC) sequence, the m-sequence and the Golay sequence. A salient feature of the proposed sensing matrices is that they can not only handle sparse signals in the time domain, but also those in the frequency and/or or discrete-cosine transform (DCT) domain
Computation of the para-pseudoinverse for oversampled filter banks: Forward and backward Greville formulas
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Frames and oversampled filter banks have been extensively studied over the past few years due to their increased design freedom and improved error resilience. In frame expansions, the least square signal reconstruction operator is called the dual frame, which can be obtained by choosing the synthesis filter bank as the para-pseudoinverse of the analysis bank. In this paper, we study the computation of the dual frame by exploiting the Greville formula, which was originally derived in 1960 to compute the pseudoinverse of a matrix when a new row is appended. Here, we first develop the backward Greville formula to handle the case of row deletion. Based on the forward Greville formula, we then study the computation of para-pseudoinverse for extended filter banks and Laplacian pyramids. Through the backward Greville formula, we investigate the frame-based error resilient transmission over erasure channels. The necessary and sufficient condition for an oversampled filter bank to be robust to one erasure channel is derived. A postfiltering structure is also presented to implement the para-pseudoinverse when the transform coefficients in one subband are completely lost
Tail Asymptotics of Deflated Risks
Random deflated risk models have been considered in recent literatures. In
this paper, we investigate second-order tail behavior of the deflated risk X=RS
under the assumptions of second-order regular variation on the survival
functions of the risk R and the deflator S. Our findings are applied to
approximation of Value at Risk, estimation of small tail probability under
random deflation and tail asymptotics of aggregated deflated riskComment: 2
Flux sensing device using a tubular core with toroidal gating coil and solenoidal output coil wound thereon Patent
Flux gate magnetometer with toroidal gating coil and solenoidal output coil for signal modulation or amplificatio
Quasi-optimum design of control systems for moving base simulators
Optimal control of six degree of freedom moving-base simulato
Polar codes and polar lattices for the Heegard-Berger problem
Explicit coding schemes are proposed to achieve the rate-distortion function of the Heegard-Berger problem using polar codes. Specifically, a nested polar code construction is employed to achieve the rate-distortion function for doublysymmetric binary sources when the side information may be absent. The nested structure contains two optimal polar codes for lossy source coding and channel coding, respectively. Moreover, a similar nested polar lattice construction is employed when the source and the side information are jointly Gaussian. The proposed polar lattice is constructed by nesting a quantization polar lattice and a capacity-achieving polar lattice for the additive white Gaussian noise channel
- …
