15,668 research outputs found

    How to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay

    Get PDF
    The Majorana nature of massive neutrinos will be crucially probed in the next-generation experiments of the neutrinoless double-beta (0ν2β0\nu 2\beta) decay. The effective mass term of this process, mee\langle m\rangle^{}_{ee}, may be contaminated by new physics. So how to interpret a discovery or null result of the 0ν2β0\nu 2\beta decay in the foreseeable future is highly nontrivial. In this paper we introduce a novel three-dimensional description of mee|\langle m\rangle_{ee}^{}|, which allows us to see its sensitivity to the lightest neutrino mass and two Majorana phases in a transparent way. We take a look at to what extent the free parameters of mee|\langle m\rangle_{ee}^{}| can be well constrained provided a signal of the 0ν2β0\nu 2\beta decay is observed someday. To fully explore lepton number violation, all the six effective Majorana mass terms mαβ\langle m\rangle_{\alpha\beta}^{} (for α,β=e,μ,τ\alpha, \beta = e, \mu, \tau) are calculated and their lower bounds are illustrated with the two-dimensional contour figures. The effect of possible new physics on the 0ν2β0\nu 2\beta decay is also discussed in a model-independent way. We find that the result of mee|\langle m\rangle_{ee}^{}| in the normal (or inverted) neutrino mass ordering case modified by the new physics effect may somewhat mimic that in the inverted (or normal) mass ordering case in the standard three-flavor scheme. Hence a proper interpretation of a discovery or null result of the 0ν2β0\nu 2\beta decay may demand extra information from some other measurements.Comment: 13 pages, 6 figures, Figures and references update

    Constraining A4A_4 Leptonic Flavour Model Parameters at Colliders and Beyond

    Full text link
    The observed pattern of mixing in the neutrino sector may be explained by the presence of a non-Abelian, discrete flavour symmetry broken into residual subgroups at low energies. Many flavour models require the presence of Standard Model singlet scalars which can promptly decay to charged leptons in a flavour-violating manner. We constrain the model parameters of a generic A4A_4 leptonic flavour model using a synergy of experimental data including limits from charged lepton flavour conversion, an 8 TeV collider analysis and constraints from the anomalous magnetic moment of the muon. The most powerful constraints derive from the MEG collaborations' limit on Br(μeγ)\left(\mu\to e\gamma\right) and the reinterpretation of an 8 TeV ATLAS search for anomalous productions of multi-leptonic final states. We quantify the exclusionary power of each of these experiments and identify regions where the constraints from collider and MEG experimental data are complementary.Comment: v1: 28 + 9 pages, 8 figures. v2: 30 + 10 pages, 10 figures. v2 consistent with JHEP accepted version where further discussion of results and several more references were adde

    Mirroring Mobile Phone in the Clouds

    Get PDF
    This paper presents a framework of Mirroring Mobile Phone in the Clouds (MMPC) to speed up data/computing intensive applications on a mobile phone by taking full advantage of the super computing power of the clouds. An application on the mobile phone is dynamically partitioned in such a way that the heavy-weighted part is always running on a mirrored server in the clouds while the light-weighted part remains on the mobile phone. A performance improvement (an energy consumption reduction of 70% and a speed-up of 15x) is achieved at the cost of the communication overhead between the mobile phone and the clouds (to transfer the application codes and intermediate results) of a desired application. Our original contributions include a dynamic profiler and a dynamic partitioning algorithm compared with traditional approaches of either statically partitioning a mobile application or modifying a mobile application to support the required partitioning

    Ruelle Operator Theorem for Nonexpansive systems

    Full text link
    The Ruelle operator theorem has been studied extensively both in dynamical systems and iterated function systems. In this paper we study the Ruelle operator theorem for nonexpansive systems. Our theorems give some sufficient conditions for the Ruelle operator theorem to be held for a nonexpansive system
    corecore