1,008 research outputs found

    Plasma gelsolin levels and outcomes after aneurysmal subarachnoid hemorrhage

    Get PDF
    INTRODUCTION: Lower gelsolin levels have been associated with the severity and poor outcome of critical illness. Nevertheless, their link with clinical outcomes of aneurysmal subarachnoid hemorrhage is unknown. Therefore, we aimed to investigate the relationship between plasma gelsolin levels and clinical outcomes in patients with aneurysmal subarachnoid hemorrhage. METHODS: A total of 262 consecutive patients and 150 healthy subjects were included. Plasma gelsolin levels were measured by enzyme-linked immunosorbent assay. Mortality and poor long-term outcome (Glasgow Outcome Scale score of 1-3) at 6 months were recorded. RESULTS: Plasma gelsolin levels on admission were substantially lower in patients than in healthy controls (66.9 (26.4) mg/L vs. 126.4 (35.4) mg/L, P < 0.001), and negatively associated with World Federation of Neurological Surgeons score (r = -0.554, P < 0.001) and Fisher score (r = -0.538, P < 0.001), and identified as an independent predictor of poor functional outcome (odds ratio, 0.957; 95% confidence interval (CI), 0.933-0.983; P = 0.001) and death (odds ratio, 0.953; 95% CI, 0.917-0.990; P = 0.003) after 6 months. The areas under the ROC curve of gelsolin for functional outcome and mortality were similar to those of World Federation of Neurological Surgeons score and Fisher score (all P > 0.05). Gelsolin improved the predictive values of World Federation of Neurological Surgeons score and Fisher score for functional outcome (both P < 0.05), but not for mortality (both P > 0.05). CONCLUSIONS: Gelsolin levels are a useful, complementary tool to predict functional outcome and mortality 6 months after aneurysmal subarachnoid hemorrhage

    High remission and low relapse with prolonged intensive DMARD therapy in rheumatoid arthritis (PRINT): A multicenter randomized clinical trial

    Get PDF
    Objectives: To determine whether prolonged intensive disease-modifying antirheumatic drug (DMARD) treatment (PRINT) leads to high remission and low relapse rates in patients with severe rheumatoid arthritis (RA). Methods: In this multicenter, randomized and parallel treatment trial, 346 patients with active RA (disease activity score (28 joints) [DAS28] (erythrocyte sedimentation rate [ESR]) &gt; 5.1) were enrolled from 9 centers. In phase 1, patients received intensive treatment with methotrexate, leflunomide, and hydroxychloroquine, up to 36 weeks, until remission (DAS28 ≤ 2.6) or a low disease activity (2.6 &#60; DAS28 ≤ 3.2) was achieved. In phase 2, patients achieving remission or low disease activity were followed up with randomization to 1 of 2 step-down protocols: leflunomide plus hydroxychloroquine combination or leflunomide monotherapy. The primary endpoints were good European League Against Rheumatism (EULAR) response (DAS28 (ESR) &#60; 3.2 and a decrease of DAS28 by at least 1.2) during the intensive treatment and the disease state retention rate during step-down maintenance treatment. Predictors of a good EULAR response in the intensive treatment period and disease flare in the maintenance period were sought. Results: A good EULAR response was achieved in 18.7%, 36.9%, and 54.1% of patients at 12, 24, and 36 weeks, respectively. By 36 weeks, 75.4% of patients achieved good and moderate EULAR responses. Compared with those achieving low disease activity and a high health assessment questionnaire (HAQ &gt; 0.5), patients achieving remission (DAS28 ≤ 2.6) and low HAQ (≤ 0.5) had a significantly higher retention rate when tapering the DMARDs treatment (P = 0.046 and P = 0.01, respectively). There was no advantage on tapering to combination rather than monotherapy. Conclusions: Remission was achieved in a proportion of patients with RA receiving prolonged intensive DMARD therapy. Low disease activity at the start of disease taper leads to less subsequent flares. Leflunomide is a good maintenance treatment as single treatment

    Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200 °C

    Get PDF
    In this study, a new type of Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy was fabricated and reported. Its oxidation behavior was investigated at 1200 °C compared with the conventional NiCoCrAlYHf alloy. The superior oxidation performance of the Y/Hf-doped Al0.7CoCrFeNi at 1200 °C is attributed to the dramatically enhancing homogeneity of Y/Hf-rich precipitates distribution at phase boundaries resulting from the intrinsic nano-sized phases in the alloy. The improving homogeneity of Y/Hf distribution is beneficial to inhibit the formation of interfacial imperfections and the interfacial S segregation, thus contributing to an enhancing interfacial adhesion and a strong resistance to TGO spallation

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Plastisol Foaming Process. Decomposition of the Foaming Agent, Polymer Behavior in the Corresponding Temperature Range and Resulting Foam Properties

    Get PDF
    The decomposition of azodicarbonamide, used as foaming agent in PVC - plasticizer (1/1) plastisols was studied by DSC. Nineteen different plasticizers, all belonging to the ester family, two being polymeric (polyadipates), were compared. The temperature of maximum decomposition rate (in anisothermal regime at 5 K min-1 scanning rate), ranges between 434 and 452 K. The heat of decomposition ranges between 8.7 and 12.5 J g -1. Some trends of variation of these parameters appear significant and are discussed in terms of solvent (matrix) and viscosity effects on the decomposition reactions. The shear modulus at 1 Hz frequency was determined at the temperature of maximum rate of foaming agent decomposition, and differs significantly from a sample to another. The foam density was determined at ambient temperature and the volume fraction of bubbles was used as criterion to judge the efficiency of the foaming process. The results reveal the existence of an optimal shear modulus of the order of 2 kPa that corresponds roughly to plasticizer molar masses of the order of 450 ± 50 g mol-1. Heavier plasticizers, especially polymeric ones are too difficult to deform. Lighter plasticizers such as diethyl phthalate (DEP) deform too easily and presumably facilitate bubble collapse

    Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and fatal motor neuron disease. Diagnosis typically occurs in the fifth decade of life and the disease progresses rapidly leading to death within ~ 2–5 years of symptomatic onset. There is no cure, and the few available treatments offer only a modest extension in patient survival. A protein central to ALS is the nuclear RNA/DNA-binding protein, TDP-43. In > 95% of ALS patients, TDP-43 is cleared from the nucleus and forms phosphorylated protein aggregates in the cytoplasm of affected neurons and glia. We recently defined that poly(ADP-ribose) (PAR) activity regulates TDP-43-associated toxicity. PAR is a posttranslational modification that is attached to target proteins by PAR polymerases (PARPs). PARP-1 and PARP-2 are the major enzymes that are active in the nucleus. Here, we uncovered that the motor neurons of the ALS spinal cord were associated with elevated nuclear PAR, suggesting elevated PARP activity. Veliparib, a small-molecule inhibitor of nuclear PARP-1/2, mitigated the formation of cytoplasmic TDP-43 aggregates in mammalian cells. In primary spinal-cord cultures from rat, Veliparib also inhibited TDP-43-associated neuronal death. These studies uncover that PAR activity is misregulated in the ALS spinal cord, and a small-molecular inhibitor of PARP-1/2 activity may have therapeutic potential in the treatment of ALS and related disorders associated with abnormal TDP-43 homeostasis

    Pyrosequencing analysis of bacterial community changes in dental unit waterlines after chlorogenic acid treatment

    Get PDF
    IntroductionThe contamination of dental unit waterlines (DUWLs) poses a significant risk of cross-infection in dentistry. Although chemical disinfectants have been effective in reducing number of bacteria, they do have limitations.MethodsThis study aimed to investigate the potential of chlorogenic acid, a natural substance with broadspectrum antibacterial properties, for treating DUWLs. Over a period of three months, we analyzed the microbial communities in 149 DUWLs samples collected from 5 dental units using high-throughput pyrophosphate sequencing. ResultsThe results revealed that chlorogenic acid treatment had a significant impact on the microbial community profile in the DUWLs, with the most significant changes occurring within the first 15 days and stabilization observed in the last 30 days. The predominant genera detected in the samples were Bacteroides, Lactobacillus, Streptococcus, Methylobacterium, and Phreatobacter. Additionally, the relative abundance of certain beneficial bacteria, such as Alloprevotella, Roseburia, and Blautia, increased, while the presence of opportunistic pathogens like Mycobacteria significantly decreased. The functional prediction analysis using the KEGG database indicated a decrease in the pathogenicity of the bacterial community in the DUWLs following chlorogenic acid treatment. DiscussionThis study introduces a novel approach for the prevention and treatment of infections associated with dental care

    Biomimetic three-dimensional glioma model printed in vitro for the studies of glioma cells and neurons interactions

    Get PDF
    The interactions between glioma cells and neurons are important for glioma progression but are rarely mimicked and recapitulated in in vitro three-dimensional (3D) models, which may affect the success rate of relevant drug research and development. In this study, an in vitro bioprinted 3D glioma model consisting of an outer hemispherical shell with neurons and an inner hemisphere with glioma cells is proposed to simulate the natural glioma. This model was produced by extrusion-based 3D bioprinting technology. The cells survival rate, morphology, and intercellular Ca2+ concentration studies were carried out up to 5 days of culturing. It was found that neurons could promote the proliferation of glioma cells around them, associate the morphological changes of glioma cells to be neuron-like, and increase the expression of intracellular Ca2+ of glioma cells. Conversely, the presence of glioma cells could maintain the neuronal survival rate and promote the neurite outgrowth. The results indicated that glioma cells and neurons facilitated each other implying a symbiotic pattern established between two types of cells during the early stage of glioma development, which were seldom found in the present artificial glioma models. The proposed bioprinted glioma model can mimic the natural microenvironment of glioma tissue, provide an in-depth understanding of cellâ cell interactions, and enable pathological and pharmacological studies of glioma.The work was supported by the Program of the National Natural Science Foundation of China [52275291], [51675411], [81972359], the Fundamental Research Funds for the Central Universities, and the Youth Innovation Team of Shaanxi Universities
    corecore