116 research outputs found

    Real-time measurement of phloem turgor pressure in Hevea brasiliensis with a modified cell pressure probe

    Full text link
    Background: Although the pressure flow theory is widely accepted for the transport of photoassimilates in phloem sieve elements, it still requires strong experimental validation. One reason for that is the lack of a precise method for measuring the real-time phloem turgor pressure from the sink tissues, especially in tree trunks. Results: Taking the merits of Hevea brasiliensis, a novel phloem turgor pressure probe based on the state of the art cell pressure probe was developed. Our field measurements showed that the phloem turgor pressure probe can sensitively measure the real-time variation of phloem turgor pressure in H. brasiliensis but the calculation of phloem turgor pressure with xylem tension, xylem sap osmotic potential and phloem sap osmotic potential will under-estimate it. The measured phloem turgor pressure gradient in H. brasiliensis is contrary to the M&uuml;nch theory. The phloem turgor pressure of H. brasiliensis varied from 8-12 bar as a consequence of water withdrawal from transpiration. Tapping could result in a sharp decrease of phloem turgor pressure followed by a recovery from 8-45 min after the tapping. The recovery of phloem turgor pressure after tapping and its change with xylem sap flow suggest the importance of phloem water relationship in the phloem turgor pressure regulation. Conclusion: The phloem turgor pressure probe is a reliable technique for measuring the real-time variation of phloem turgor pressures in H. brasiliensis. The technique could probably be extended to the accurate measurement of phloem turgor pressure in other woody plants which is essential to test the M&uuml;nch theory and to investigate the phloem water relationship and turgor pressure regulation. <br /

    Regulation of HbPIP2;3, a latex-abundant water transporter, is associated with latex dilution and yield in the rubber tree (Hevea brasiliensis Muell. Arg.)

    Full text link
    Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea

    Improved efficacy and reduced toxicity of doxorubicin encapsulated in sulfatide-containing nanoliposome in a glioma model

    Get PDF
    As a glycosphingolipid that can bind to several extracellular matrix proteins, sulfatide has the potential to become an&nbsp;effective targeting agent for tumors overexpressing tenasin-C in their microenvironment. To overcome the dose-limiting&nbsp;toxicity of doxorubicin (DOX), a sulfatide-containing nanoliposome (SCN) encapsulation approach was employed to&nbsp;improve treatment efficacy and reduce side effects of free DOX. This study analysed in vitro characteristics of sulfatidecontaining&nbsp;nanoliposomal DOX (SCN-DOX) and assessed its cytotoxicity in vitro, as well as biodistribution, therapeutic&nbsp;efficacy, and systemic toxicity in a human glioblastoma U-118MG xenograft model. SCN-DOX was shown to achieve highest&nbsp;drug to lipid ratio (0.5:1) and a remarkable in vitro stability. Moreover, DOX encapsulated in SCN was shown to be delivered&nbsp;into the nuclei and displayed prolonged retention over free DOX in U-118MG cells. This simple two-lipid SCN- DOX nanodrug has favourable pharmacokinetic attributes in terms of prolonged circulation time, reduced volume of distribution and&nbsp;enhanced bioavailability in healthy rats. As a result of the improved biodistribution, an enhanced treatment efficacy of SCNDOX&nbsp;was found in glioma-bearing mice compared to the free drug. Finally, a reduction in the accumulation of DOX in the&nbsp;drug&rsquo;s principal toxicity organs achieved by SCN-DOX led to the diminished systemic toxicity as evident from the plasma&nbsp;biochemical analyses. Thus, SCN has the potential to be an effective and safer nano-carrier for targeted delivery of&nbsp;therapeutic agents to tumors with elevated expression of tenascin-C in their microenvironment

    Molecular dynamics study of response of liquid N,N-dimethylformamide to externally applied electric field using a polarizable force field

    Full text link
    The behavior of Liquid N,N-dimethylformamide subjected to a wide range of externally applied electric fields (from 0.001 V/nm to 1 V/nm) has been investigated through molecular dynamics simulation. To approach the objective the AMOEBA polarizable force field was extended to include the interaction of the external electric field with atomic partial charges and the contribution to the atomic polarization. The simulation results were evaluated with quantum mechanical calculations. The results from the present force field for the liquid at normal conditions were compared with the experimental and molecular dynamics results with non-polarizable and other polarizable force fields. The uniform external electric fields of higher than 0.01 V/nm have a significant effect on the structure of the liquid, which exhibits a variation in numerous properties, including molecular polarization, local cluster structure, rotation, alignment, energetics, and bulk thermodynamic and structural properties

    Distributed topology identification algorithm of distribution network based on neighboring interaction

    Get PDF
    Intelligent distributed control and protection is a promising route towards flexible and safety operation of distribution network with widespread access of distributed energy resources A fundamental premise of the distributed decision-making is that each smart terminal can identify the topological structure of the feeder and track its changes. This paper proposes a distributed topology identification algorithm with high fault tolerance based on peer-to-peer communication. The smart terminal units (STU) installed on the nodes can dynamiclly track and identify the network topology through local measurement and information exchange with neighboring STUs. The proposed algorithm combines local measurement mutual check with contralateral connectivity predictive correction, and significantly improves the tolerance of measurement errors in topology identification. Test examples are presented to verify the effectiveness of the method

    An in-situ small angle x ray scattering analysis of nanopore formation during thermally induced chemical dealloying of brass thin foils

    Full text link
    The development of non-noble nano-porous metal materials is hindered by surface oxidation reactions and from the difficulty to generate long range order pore arrays. Dealloying is a promising route to generate such materials by selective chemical etching of metal alloy materials. This process can generate nano-metal materials with superior plasmonic, catalytic and adsorptive surface properties. Here, the impact of properties of the etching solution on the dealloying process to generate nano-pores across thin film alloys was investigated by in-situ SAXS dealloying experiments. Single phase CuZn alloys were used as model materials to evaluate the influence of the solution temperature on the pore formation kinetics. This novel analysis allowed to visualize the change in surface properties of the materials over time, including their surface area as well as their pore and ligament sizes. The dealloying kinetics at the very early stage of the process were found to be critical to both stable pore formation and stabilization. SAXS in-situ data were correlated to the morphological properties of the materials obtained from ex-situ samples by Rutherford back scattering and scanning electron microscopy

    Superior performance of aptamer in tumor penetration over antibody : implication of aptamer-based theranostics in solid tumors

    Get PDF
    Insufficient penetration of therapeutic agents into tumor tissues results in inadequate drug distribution and lower intracellular concentration of drugs, leading to the increase of drug resistance and resultant failure of cancer treatment. Targeted drug delivery to solid tumors followed by complete drug penetration and durable retention will significantly improve clinical outcomes of cancer therapy. Monoclonal antibodies have been commonly used in clinic for cancer treatment, but their limitation of penetrating into tumor tissues still remains because of their large size. Aptamers, as &quot;chemical antibodies&quot;, are 15-20 times smaller than antibodies. To explore whether aptamers are superior to antibodies in terms of tumor penetration, we carried out the first comprehensive study to compare the performance of an EpCAM aptamer with an EpCAM antibody in theranostic applications. Penetration and retention were studied in in vitro three-dimensional tumorspheres, in vivo live animal imaging and mouse colorectal cancer xenograft model. We found that the EpCAM aptamer can not only effectively penetrate into the tumorsphere cores but can also be retained by tumor sphere cells for at least 24 h, while limited tumor penetration by EpCAM antibody was observed after 4 h incubation. As observed from in vivo live animal imaging, EpCAM aptamers displayed a maximum tumor uptake at around 10 min followed by a rapid clearance after 80 min, while the signal of peak uptake and disappearance of antibody appeared at 3 h and 6 h after intravenous injection, respectively. The signal of PEGylated EpCAM aptamers in xenograft tumors was sustained for 26 h, which was 4.3-fold longer than that of the EpCAM antibody. Consistently, there were 1.67-fold and 6.6-fold higher accumulation of PEGylated aptamer in xenograft tumors than that of antibody, at 3 h and 24 h after intravenous administration, respectively. In addition, the aptamer achieved at least a 4-time better tumor penetration in xenograft tumors than that of the antibody at a 200 &mu;m distances from the blood vessels 3 h after intravenous injection. Taken together, these data indicate that aptmers are superior to antibodies in cancer theranostics due to their better tumor penetration, more homogeneous distribution and longer retention in tumor sites. Thus, aptamers are promising agents for targeted tumor therapeutics and molecular imaging

    A Multi-Agent-Based Self-Healing Framework Considering Fault Tolerance and Automatic Restoration for Distribution Networks

    No full text
    corecore