60 research outputs found
Values of lymphocyte-related ratios in predicting the clinical outcome of acute ischemic stroke patients receiving intravenous thrombolysis based on different etiologies
BackgroundWhile neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) have been associated with acute ischemic stroke (AIS) outcomes, their differential predictive value across etiological subtypes (TOAST classification) in thrombolysis-treated patients remains underexplored.MethodsIn this retrospective cohort study, we analyzed 381 AIS patients receiving intravenous thrombolysis. Hematological indices were calculated from pre-thrombolysis. Using multivariable logistic regression adjusted for age, NIHSS, and comorbidities, we assessed associations between baseline ratios and 90-day unfavorable outcomes (mRS 3–6). Receiver operating characteristic (ROC) analysis was used to determine optimal cutoffs stratified by TOAST subtypes.ResultsA total of 381 patients were included in the study. NLR showed superior predictive performance: large-artery atherosclerosis: AUC = 0.702 (aOR = 1.35, 95%CI = 1.14–1.61, p = 0.001), small-artery occlusion: AUC = 0.750 (aOR = 1.51, 95%CI = 1.08–2.10, p = 0.015), cardioembolic stroke: AUC = 0.679 (aOR = 1.82, 95%CI = 1.07–3.10, p = 0.028). LMR showed predictive value only in large-artery atherosclerosis (AUC = 0.632, p = 0.004). Optimal NLR cutoffs: 3.19 (large-artery), 3.94 (small-artery), 3.17 (cardioembolic stroke).ConclusionNLR emerged as a robust, subtype-specific predictor of post-thrombolysis outcomes, particularly in atherosclerotic stroke variants. These findings supported NLR’s clinical utility for risk stratification in thrombolysis-eligible AIS patients
A Distance Estimation Algorithm for Infrared System Based on Structure Stochastic Jump System Theory
713 An Application of Cross-Flow Turbine to Micro Hydroelectric Generation : Investigation on Simplification of the Structure and Runaway Speed Characteristics
Research progress of circular RNA FOXO3 in diseases (review)
Circular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs with a closed-loop structures, and they exert crucial regulatory functions in diverse biological processes and disease development through the modulation of linear RNA transcription, downstream gene expression, and protein translation, among others. Circular RNA FOXO3(circFOXO3, Hsa_circ_0006404) originates from exon 2 of the FOXO3 gene and exhibits widespread cytoplasmic expression in eukaryotic cells. It shows specific expression in different tissues or cells. Recent research has associated circFOXO3 with various diseases such as cancer, cardiovascular diseases, neurological disorders, senescence, and inflammation. However, a comprehensive review of the research progress of circFOXO3 in human diseases has not been conducted. In this paper, we provide a systematic review of the latest advances in circFOXO3 research in diseases, elucidate its biological functions and potential molecular mechanisms, and discuss the future directions and challenges in circRNAs research to provide valuable references and inspiration for research in this field
Application of Low Head Cross-Flow Turbine to Micro-Hydropower. Simplification of the Turbine Structure and Performance Improvement.
11.8 A 5A 94.5% Peak Efficiency 9~16V-to-1V Dual-Path Series-Capacitor Converter with Full Duty Range and Low V.A Metric
Tool Wear Mechanism and Grinding Performance for Different Cooling-Lubrication Modes in Grinding of Nickel-Based Superalloys
Tool wear introduced during grinding nickel-based superalloys was identified as a significant factor affecting the production quality of aero-engine industries concerning high service performance and high precision. Moreover, uncertainties derived from the various cooling-lubrication modes used in grinding operations complicated the assessment of grinding preformation. Therefore, this work investigated the tool wear mechanisms in grinding nickel-based superalloys that adopted five cooling-lubrication modes and investigated how the wear behaviors affected grinding performance. Results showed that chip-deposits covered some areas on the tool surface under dry grinding and accelerated the tool failure, which produced the highest values of tangential force, 7.46 N, and normal force, 14.1 N. Wedge-shape fractures induced by indentation fatigue were found to be the predominant wear mechanism when grinding nickel-based superalloys under flood cooling mode. The application of minimum quantity lubrication-palm oil (MQL-PO), MQL-multilayer graphene (MQL-MG), and MQL-Al2O3 nanoparticles (MQL-Al2O3) formed lubricity oil-film on the tool surface, which improved the capacity of lubrication in the tool–workpiece contact zone and provided 37%, 30%, and 52% higher coefficient of friction than dry mode, respectively. The results of this study demonstrate that lubricated oil-film produced by MQL modes reduces the possibility of fractures of cubic boron nitride (CBN) grits to some extent
低落差貫流水車のマイクロ水力発電への適用 : 水車構造の簡素化と性能向上
Relatively high cost is the highest barrier for developing micro-hydropower. A cross-flow turbine is suitable for micro-hydropower because of its simple structure. In this study, in order to further simplify the structure, a guide vane is removed, and the runner chamber is made compact using a new air supply method proposed by the authors. As a result, the size of the turbine is remarkably reduced, and in the meanwhile the efficiency of the turbine is improved by about 2% in a wide operating range
Glycyrol exerts potent therapeutic effect on lung cancer via directly inactivating T-LAK cell-originated protein kinase
- …
