254 research outputs found
Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing
Within the context of autonomous driving a model-based reinforcement learning
algorithm is proposed for the design of neural network-parameterized
controllers. Classical model-based control methods, which include sampling- and
lattice-based algorithms and model predictive control, suffer from the
trade-off between model complexity and computational burden required for the
online solution of expensive optimization or search problems at every short
sampling time. To circumvent this trade-off, a 2-step procedure is motivated:
first learning of a controller during offline training based on an arbitrarily
complicated mathematical system model, before online fast feedforward
evaluation of the trained controller. The contribution of this paper is the
proposition of a simple gradient-free and model-based algorithm for deep
reinforcement learning using task separation with hill climbing (TSHC). In
particular, (i) simultaneous training on separate deterministic tasks with the
purpose of encoding many motion primitives in a neural network, and (ii) the
employment of maximally sparse rewards in combination with virtual velocity
constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl
An Efficient Protocol for the Palladium-Catalyzed Asymmetric Decarboxylative Allylic Alkylation Using Low Palladium Concentrations and a Palladium(II) Precatalyst
Enantioselective catalytic allylic alkylation for the synthesis of 2-alkyl-2-allylcycloalkanones and 3,3-disubstituted pyrrolidinones, piperidinones and piperazinones has been previously reported by our laboratory. The efficient construction of chiral all-carbon quaternary centers by allylic alkylation was previously achieved with a catalyst derived in situ from zero-valent palladium sources and chiral phosphinooxazoline (PHOX) ligands. We now report an improved reaction protocol with broad applicability among different substrate classes in industry-compatible reaction media using loadings of palladium(II) acetate as low as 0.075 mol% and the readily available chiral PHOX ligands. The novel and highly efficient procedure enables facile scale-up of the reaction in an economical and sustainable fashion
MontanAqua. Anticiper le stress hydrique dans les Alpes ? Scénarios de gestion de l'eau dans la région de Crans-Montana-Sierre (Valais) : résultats finaux et recommandations
Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation
Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of “classic” natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge
MontanAqua : Wasserbewirtschaftung in Zeiten von Knappheit und globalem Wandel. Wasserbewirtschaftungsoptionen für die Region Crans-Montana-Sierre im Wallis
Das nationale Forschungsprogramm NFP 61 «Nachhaltige Wassernutzung » des Schweizerischen Nationalfonds hat sich zum Ziel gesetzt, wissenschaftliche Grundlagen zur nachhaltigen Wasserbewirtschaftung in der Schweiz zu liefern. Als Teil dieses Forschungsvorhabens wurde im Rahmen des Projektes MontanAqua die Wasserbewirtschaftung der Region Crans-Montana-Sierre (Wallis) untersucht. Es ging dabei darum, in enger Zusammenarbeit mit den in der Region betroffenen Akteuren nachhaltige Wassernutzungsstrategien für die Zukunft zu entwickeln. MontanAqua hat sich vertieft mit den bestehenden Systemen der Wasserbewirtschaftung auf der regionalen Skala (11 Gemeinden) auseinandergesetzt. Dazu wurden die zukünftigen Auswirkungen der klimatischen und sozioökonomischen Veränderungen einbezogen. Das Forschungsteam analysierte die aktuelle Situation anhand von quantitativen, qualitativen sowie kartografischen Methoden und kombinierte diese mit Modellberechnungen. Für die Modellierung der Zukunft wurden regionale Klimaszenarien und vier mit lokalen Akteuren entwickelte sozioökonomische Szenarien verwendet. Dieser Überblick fasst die Resultate des Projektes MontanAqua zusammen. Fünf wesentliche Fragen werden beantwortet und fünf Kernbotschaften erläutert. Zudem sind Empfehlungen für die Verantwortlichen der regionalen und kantonalen Wasserbewirtschaftung formuliert
MontanAqua. Anticiper le stress hydrique dans les Alpes ? Scénarios de gestion de l'eau dans la région de Crans-Montana-Sierre (Valais) : résultats finaux et recommandations
Fault Detection and Diagnosis Methods for Fluid Power Pitch System Components – A Review
Wind turbines have become a significant part of the global power production and are still increasing in capacity. Pitch systems are an important part of modern wind turbines where they are used to apply aerodynamic braking for power regulation and emergency shutdowns. Studies have shown that the pitch system is responsible for up to 20% of the total down time of a wind turbine. Reducing the down time is an important factor for decreasing the total cost of energy of wind energy in order to make wind energy more competitive. Due to this, attention has come to condition monitoring and fault detection of such systems as an attempt to increase the reliability and availability, hereby the reducing the turbine downtime. Some methods for fault detection and condition monitoring of fluid power systems do exists, though not many are used in today’s pitch systems. This paper gives an overview of fault detection and condition monitoring methods of fluid power systems similar to fluid power pitch systems in wind turbines and discuss their applicability in relation to pitch systems. The purpose is to give an overview of which methods that exist and to find areas where new methods need to be developed or existing need to be modified. The paper goes through the most important components of a pitch system and discuss the existing methods related to each type of component. Furthermore, it is considered if existing methods can be used for fluid power pitch systems for wind turbine
Shrinking water bodies as hotspots of sand and dust storms: The role of land degradation and sustainable soil and water management
Sand and Dust Storms (SDS) are a natural phenomenon with important impacts on ecosystems and human society. SDS hotspots are mostly located in drylands, however their impact goes beyond national and regional boundaries, making them a global issue. Factors affecting SDS occurrence include weather and climate, land cover and soil surface conditions, geomorphology and terrain types. "Playas", the exposed beds of shrinking water bodies, play a significant role in dust generation. Land degradation and desertification processes play an important role on dust emission from playa sources, which is frequently triggered or increased by human activities such as unsustainable land and water use upstream, reduced vegetation cover on and around playas, and mechanical disturbance of the playa surfaces.It has been estimated that anthropogenic playa sources contribute 85% of global anthropogenic dust emissions. Anthropogenic playa sources are frequently located near human settlements, so that even relatively small dust sources can have severe socio-economic and environmental impacts, including soil salinization and soil pollution when playa sediments are salt-rich or polluted. In these contexts, the implementation of sustainable land and water management (SLWM) measures and integrated watershed planning is particularly urgent to reduce dust emission and its impacts. The United Nations Conventions to Combat Desertification (UNCCD) identified the mitigation of anthropogenic SDS sources as a major pillar towards combating SDS.The number of scientific articles addressing this issue is rapidly increasing, but our understanding of SDS emitted from anthropogenic playa sources remains limited and fragmented. This article reviews the literature on playa sources that are recognized to be mainly anthropogenic in nature, with particular focus on the anthropogenic drivers, the SDS-related impacts, and the possible SLWM-based solutions to reduce SDS impact
The Land-Potential Knowledge System (LandPKS): mobile apps and collaboration for optimizing climate change investments
Massive investments in climate change mitigation and adaptation are projected during coming decades. Many of these investments will seek to modify how land is managed. The return on both types of investments can be increased through an understanding of land potential: the potential of the land to support primary production and ecosystem services, and its resilience. A Land-Potential Knowledge System (LandPKS) is being developed and implemented to provide individual users with point-based estimates of land potential based on the integration of simple, geo-tagged user inputs with cloud-based information and knowledge. This system will rely on mobile phones for knowledge and information exchange, and use cloud computing to integrate, interpret, and access relevant knowledge and information, including local knowledge about land with similar potential. The system will initially provide management options based on long-term land potential, which depends on climate, topography, and relatively static soil properties, such as soil texture, depth, and mineralogy. Future modules will provide more specific management information based on the status of relatively dynamic soil properties such as organic matter and nutrient content, and of weather. The paper includes a discussion of how this system can be used to help distinguish between meteorological and edaphic drought
- …
