464 research outputs found
Production and characterization of monoclonal antibodies to the extracellular domain of PO
Seven monoclonal antibodies were raised against the immunoglobulin-like extracellular domain of PO (POED), the major protein of peripheral nervous system myelin. Mice were immunized with purified recombinant rat PO-ED. After fusion, 7 clones (POI-P07) recognizing either recombinant, rat, mouse, or human PO-ED were selected by ELlS A and were characterized by Western blot, immunohistochemistry, and a competition assay. Antibodies belonged to the IgG or IgM class, and P04-P07, reacted with PO in fresh-frozen and paraffin-embedded sections of human or rat peripheral nerve, but not with myelin proteins of the central nervous system of either species. Epitope specificity of the antibodies was determined by a competition enzyme-linked immunosorbent assay (ELISA) and a direct ELlS A using short synthetic peptides spanning the entire extracellular domain of PO. These assays showed that POl and P02 exhibiting the same reaction pattern in Western blot and immunohistochemistry reacted with different distant epitopes of PO. Furthermore, the monoclonal antibodies P05 and P06 recognized 2 different epitopes in close proximity within the neuritogenic extracellular sequence of PO. This panel of monoclonal antibodies, each binding to a different epitope of the extracellular domain of PO, will be useful for in vitro and in vivo studies designed to explore the role of PO during myelination and in demyelinating diseases of the peripheral nervous system
Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected
The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences
Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009
This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis
Recommended from our members
On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds.
Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was dependent on backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1,024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (molecular mass = 755 Da) with three N-methyl groups, showed an oral bioavailability of 28% in rat
Additivity and non-additivity of multipartite entanglement measures
We study the additivity property of three multipartite entanglement measures,
i.e. the geometric measure of entanglement (GM), the relative entropy of
entanglement and the logarithmic global robustness. First, we show the
additivity of GM of multipartite states with real and non-negative entries in
the computational basis. Many states of experimental and theoretical interests
have this property, e.g. Bell diagonal states, maximally correlated generalized
Bell diagonal states, generalized Dicke states, the Smolin state, and the
generalization of D\"{u}r's multipartite bound entangled states. We also prove
the additivity of other two measures for some of these examples. Second, we
show the non-additivity of GM of all antisymmetric states of three or more
parties, and provide a unified explanation of the non-additivity of the three
measures of the antisymmetric projector states. In particular, we derive
analytical formulae of the three measures of one copy and two copies of the
antisymmetric projector states respectively. Third, we show, with a statistical
approach, that almost all multipartite pure states with sufficiently large
number of parties are nearly maximally entangled with respect to GM and
relative entropy of entanglement. However, their GM is not strong additive;
what's more surprising, for generic pure states with real entries in the
computational basis, GM of one copy and two copies, respectively, are almost
equal. Hence, more states may be suitable for universal quantum computation, if
measurements can be performed on two copies of the resource states. We also
show that almost all multipartite pure states cannot be produced reversibly
with the combination multipartite GHZ states under asymptotic LOCC, unless
relative entropy of entanglement is non-additive for generic multipartite pure
states.Comment: 45 pages, 4 figures. Proposition 23 and Theorem 24 are revised by
correcting a minor error from Eq. (A.2), (A.3) and (A.4) in the published
version. The abstract, introduction, and summary are also revised. All other
conclusions are unchange
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
A path unenvisaged to a destination unintended: A collaborative autoethnographic account of becoming a community of practice in an HEI
In this paper we explore how a disparate group of predominately foundation phase teacher educators unintentionally, over a period of time, came together to form a strong community of practice (CoP). Voluntary involvement in a research project positioned this group of lecturers in unaccustomed roles and necessitated that they engage with each other in a variety of ways to meet project outcomes. New relationships developed as people took on different roles and new responsibilities emerged as the group faced challenges. As this was a subjective interrogation of our experiences, a research method such as autoethnography where we could focus on the experience and processes of becoming a CoP, rather than the outcomes of the research itself, seemed appropriate. We outline our understandings of a CoP and show how, through a critical self-reflective process, we were able to strengthen both our teaching and research practices in a Higher Education Institution (HEI). The strengthening occurred, in part, due to the formation and development of this CoP
Maternal neurofascin-specific autoantibodies bind to structures of the fetal nervous system during pregnancy, but have no long term effect on development in the rat
Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. Results: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. Conclusions: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children
Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9
The failure of remyelination in multiple sclerosis is largely unexplained. Lindner et al. report that glial cells in demyelinating lesions show increased expression of fibroblast growth factor 9 (FGF9). This induces astrocyte-dependent responses that inhibit remyelination and stimulate expression of pro-inflammatory chemokines, supporting a feedback loop that amplifies disease activit
The Extracellular Domain of Myelin Oligodendrocyte Glycoprotein Elicits Atypical Experimental Autoimmune Encephalomyelitis in Rat and Species
Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction
- …
