34 research outputs found
Digital navigation of energy-structure-function maps for hydrogen-bonded porous molecular crystals
A nomogram based on CT intratumoral and peritumoral radiomics features preoperatively predicts poorly differentiated invasive pulmonary adenocarcinoma manifesting as subsolid or solid lesions: a double-center study
BackgroundThe novel International Association for the Study of Lung Cancer (IASLC) grading system suggests that poorly differentiated invasive pulmonary adenocarcinoma (IPA) has a worse prognosis. Therefore, prediction of poorly differentiated IPA before treatment can provide an essential reference for therapeutic modality and personalized follow-up strategy. This study intended to train a nomogram based on CT intratumoral and peritumoral radiomics features combined with clinical semantic features, which predicted poorly differentiated IPA and was tested in independent data cohorts regarding models’ generalization ability.MethodsWe retrospectively recruited 480 patients with IPA appearing as subsolid or solid lesions, confirmed by surgical pathology from two medical centers and collected their CT images and clinical information. Patients from the first center (n =363) were randomly assigned to the development cohort (n = 254) and internal testing cohort (n = 109) in a 7:3 ratio; patients (n = 117) from the second center served as the external testing cohort. Feature selection was performed by univariate analysis, multivariate analysis, Spearman correlation analysis, minimum redundancy maximum relevance, and least absolute shrinkage and selection operator. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the model performance.ResultsThe AUCs of the combined model based on intratumoral and peritumoral radiomics signatures in internal testing cohort and external testing cohort were 0.906 and 0.886, respectively. The AUCs of the nomogram that integrated clinical semantic features and combined radiomics signatures in internal testing cohort and external testing cohort were 0.921 and 0.887, respectively. The Delong test showed that the AUCs of the nomogram were significantly higher than that of the clinical semantic model in both the internal testing cohort(0.921 vs 0.789, p< 0.05) and external testing cohort(0.887 vs 0.829, p< 0.05).ConclusionThe nomogram based on CT intratumoral and peritumoral radiomics signatures with clinical semantic features has the potential to predict poorly differentiated IPA manifesting as subsolid or solid lesions preoperatively
Effect of White Kidney Bean Flour on the Rheological Properties and Starch Digestion Characteristics of Noodle Dough
The aim of this study was to investigate the effect of adding white kidney bean flour on the quality of noodles. We selected four different proportions of white kidney bean flour (10–40%) in wheat flour to make the noodles, after which the noodles were analysed for their physical and chemical properties. The statistical method of correlation analysis was used in this study. The results showed that the noodles’ sensory and textural characteristics significantly improved after adding white kidney bean flour (p < 0.05). Compared with the control, the noodles’ surface with white kidney bean flour was denser and smoother. Moreover, microstructural observations indicated that the noodles with white kidney bean flour showed a more continuous protein network. The in vitro digestion results showed that the addition of white kidney bean flour reduced the digestibility of the noodles. Low addition of the flour (10–20%) improved the quality of the noodles, whereas high amounts (30–40%) showed the opposite effect. In this study, the optimal amount of white kidney bean powder was found to be 20%
In Silico Tuning of the Pore Surface Functionality in Al-MOFs for Trace CH<sub>3</sub>I Capture
A disposable paper-based sample clean-up slides for the sensitive determination of trace diethylstilbestrol residues in aquatic products
Early Discrimination and Prediction of C. fimbriata-Infected Sweetpotatoes during the Asymptomatic Period Using Electronic Nose
Sweetpotato is prone to disease caused by C. fimbriata without obvious lesions on the surface in the early period of infection. Therefore, it is necessary to explore the possibility of developing an efficient early disease detection method for sweetpotatoes that can be used before symptoms are observed. In this study, sweetpotatoes were inoculated with C. fimbriata and stored for different lengths of time. The total colony count was detected every 8 h; HS-SPME/GC–MS and E-nose were used simultaneously to detect volatile compounds. The results indicated that the growth of C. fimbriata entered the exponential phase at 48 h, resulting in significant differences in concentrations of volatile compounds in infected sweetpotatoes at different times, especially toxic ipomeamarone in ketones. The contents of volatile compounds were related to the responses of the sensors. E-nose was combined with multiple chemometrics methods to discriminate and predict infected sweetpotatoes at 0 h, 48 h, 64 h, and 72 h. Among the methods used, linear discriminant analysis (LDA) had the best discriminant effect, with sensitivity, specificity, precision, and accuracy scores of 100%. E-nose combined with K-nearest neighbours (KNN) achieved the best predictions for ipomeamarone contents and total colony counts. This study illustrates that E-nose is a feasible and promising technology for the early detection of C. fimbriata infection in sweetpotatoes during the asymptomatic period
Early Discrimination and Prediction of C. fimbriata-Infected Sweetpotatoes during the Asymptomatic Period Using Electronic Nose
Sweetpotato is prone to disease caused by C. fimbriata without obvious lesions on the surface in the early period of infection. Therefore, it is necessary to explore the possibility of developing an efficient early disease detection method for sweetpotatoes that can be used before symptoms are observed. In this study, sweetpotatoes were inoculated with C. fimbriata and stored for different lengths of time. The total colony count was detected every 8 h; HS-SPME/GC–MS and E-nose were used simultaneously to detect volatile compounds. The results indicated that the growth of C. fimbriata entered the exponential phase at 48 h, resulting in significant differences in concentrations of volatile compounds in infected sweetpotatoes at different times, especially toxic ipomeamarone in ketones. The contents of volatile compounds were related to the responses of the sensors. E-nose was combined with multiple chemometrics methods to discriminate and predict infected sweetpotatoes at 0 h, 48 h, 64 h, and 72 h. Among the methods used, linear discriminant analysis (LDA) had the best discriminant effect, with sensitivity, specificity, precision, and accuracy scores of 100%. E-nose combined with K-nearest neighbours (KNN) achieved the best predictions for ipomeamarone contents and total colony counts. This study illustrates that E-nose is a feasible and promising technology for the early detection of C. fimbriata infection in sweetpotatoes during the asymptomatic period.</jats:p
Physiological–Biochemical Characteristics and a Transcriptomic Profiling Analysis Reveal the Postharvest Wound Healing Mechanisms of Sweet Potatoes under Ascorbic Acid Treatment
Sweet potatoes are extremely vulnerable to mechanical wounds during harvesting and postharvest handling. It is highly necessary to take measures to accelerate wound healing. The effect of 20 g L−1 of ascorbic acid (AA) treatment on the wound healing of sweet potatoes and its mechanisms were studied. The results validated that AA treatment significantly reduced the weight loss rate and disease index. AA treatment effectively enhanced the formation speed of lignin and SPP at the wound sites, decreased the MDA content, and maintained the cell membrane integrity. AA enhanced the activities of PAL, C4H, 4CL, CAD, and POD and increased the contents of chlorogenic acid, caffeic acid, sinapic acid, ferulic acid, cinnamic acid, p-coumaryl alcohol, sinapyl alcohol, coniferyl alcohol, and lignin. Based on a transcriptomic analysis, a total of 1200 genes were differentially expressed at the sweet potato wound sites by the AA treatment, among which 700 genes were upregulated and 500 genes were downregulated. The KEGG pathway analysis showed that the differentially expressed genes were mainly involved in phenylalanine, tyrosine, and tryptophan biosynthesis; phenylpropanoid biosynthesis; and other wound healing-related pathways. As verified by a qRT-PCR, the AA treatment significantly upregulated the gene expression levels of IbSKDH, IbADT/PDT, IbPAL, and Ib4CL at the wound sties
Analysis of the nutritional properties and flavor profile of sweetpotato residue fermented with Rhizopus oligosporus
Exploring the Impact of Citric Acid on Mitigating Sweet Potato Soft Rot and Enhancing Postharvest Quality
Citric acid (CAC) is a ubiquitous, odorless, and non-toxic food additive. Soft rot, caused by the pathogen Rhizopus stolonifer, is a major postharvest disease affecting sweet potato (Ipomoea batatas (L.) Lam). The main theme of this study is to determine the CAC inhibitory mechanism against Rhizopus stolonifer, the causative agent of sweet potato soft rot. To ascertain the practical applicability of CAC, both in vitro and in vivo methodologies were employed. The aim of the in vitro experiments in this study was to delineate the effects of a 0.5% (w/v) CAC solution on the growth inhibition of Rhizopus stolonifer, encompassing mycelial morphology and colony expansion. In vivo experiments were carried out using “Xinxiang” sweet potato varieties and the application of a 0.5% (w/v) CAC solution as a pretreatment. Specifically, the tissue treated with 0.5% CAC maintained better appearance quality and texture characteristics; peroxidase, β-1,3-glucanase, chitinase, and phenylalanine ammonia-lyase activities were enhanced. Conversely, the same treatment resulted in a downregulation of polyphenol oxidase, catalase, ascorbate peroxidase, cellulase, and polygalactosidase activities. Moreover, CAC treatment was found to maintain elevated levels of total phenolics and flavonoids within the sweet potato tissues. In summary, the study demonstrates that 0.5% CAC fortifies the resistance of sweet potato to soft rot by activating defense-related enzymes, suppressing the activity of cell wall-degrading enzymes, and promoting the accumulation of antimicrobial compounds. These results advocate for the utilization of CAC as a postharvest treatment to mitigate the incidence of sweet potato soft rot
