364 research outputs found

    Optimization and evaluation of multi-bed adsorbent tube method in collection of volatile organic compounds

    Get PDF
    The feasibility of using adsorbent tubes to collect volatile organic compounds (VOCs) has been demonstrated since the 1990's and standardized as Compendium Method TO-17 by the U.S. Environmental Protection Agency (U.S EPA). This paper investigates sampling and analytical variables on concentrations of 57 ozone (O-3) precursors (C-2-C-12 aliphatic and aromatic VOCs) specified for the Photochemical Assessment Monitoring Station (PAMS). Laboratory and field tests examined multi-bed adsorbent tubes containing a sorbate combination of Tenax TA, Carbograph 1 TD, and Carboxen 1003. Analyte stabilities were influenced by both collection tube temperature and ambient O-3 concentrations. Analytes degraded during storage, while blank levels were elevated by passive adsorption. Adsorbent tube storage under cold temperatures (- 10 degrees C) in a preservation container filled with solid silica gel and anhydrous calcium sulfate (CaSO4) ensured sample integrity. A high efficiency (> 99%) O-3 scrubber (i.e., copper coil tube filled with saturated potassium iodide [KM removed O-3 (i.e., < 200 ppbv) from the air stream with a sampling capacity of 30 h. Water vapor scrubbers interfered with VOC measurements. The optimal thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) desorption time of 8 min was found at 330 degrees C. Good linearity (R-2 > 0.995) was achieved for individual analyte calibrations (with the exception of acetylene) for mixing ratios of 0.08-1.96 ppbv. The method detection limits (MDLs) were below 0.055 ppbv for a 3 L sample volume. Replicate analyses showed relative standard deviations (RSDs) of < 10%, with the majority of the analytes within < 5%

    Networked Federated Learning

    Full text link
    We develop the theory and algorithmic toolbox for networked federated learning in decentralized collections of local datasets with an intrinsic network structure. This network structure arises from domain-specific notions of similarity between local datasets. Different notions of similarity are induced by spatio-temporal proximity, statistical dependencies or functional relations. Our main conceptual contribution is to formulate networked federated learning using a generalized total variation minimization. This formulation unifies and considerably extends existing federated multi-task learning methods. It is highly flexible and can be combined with a broad range of parametric models including Lasso or deep neural networks. Our main algorithmic contribution is a novel networked federated learning algorithm which is well suited for distributed computing environments such as edge computing over wireless networks. This algorithm is robust against inexact computations arising from limited computational resources including processing time or bandwidth. For local models resulting in convex problems, we derive precise conditions on the local models and their network structure such that our algorithm learns nearly optimal local models. Our analysis reveals an interesting interplay between the convex geometry of local models and the (cluster-) geometry of their network structure

    Generation of integration-free neural progenitor cells from cells in human urine

    Get PDF
    Human neural stem cells hold great promise for research and therapy in neural disease. We describe the generation of integration-free and expandable human neural progenitor cells (NPCs). We combined an episomal system to deliver reprogramming factors with a chemically defined culture medium to reprogram epithelial-like cells from human urine into NPCs (hUiNPCs). These transgene-free hUiNPCs can self-renew and can differentiate into multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo analysis is still needed, we report that the cells survive and differentiate upon transplant into newborn rat brain.postprin

    Exogenous brassinosteroids alleviate calcium deficiency-induced tip-burn by maintaining cell wall structural stability and higher photosynthesis in mini Chinese Cabbage

    Get PDF
    Tip-burn has seriously affected the yield, quality and commodity value of mini Chinese cabbage. Calcium (Ca2+) deficiency is the main cause of tip-burn. In order to investigate whether exogenous brassinosteroids (BRs) can alleviate tip-burn induced by calcium (Ca2+) deficiency and its mechanism, in this study, Ca2+ deficiency in nutrient solution was used to induced tip-burn, and then distilled water and BRs were sprayed on leaves to observe the tip-burn incidence of mini Chinese cabbage. The tip-burn incidence and disease index, leaf area, fluorescence parameters (Fv/Fm, NPQ, qP andφPSII) and gas exchange parameters (Tr, Pn, Gs and Ci), pigment contents, cell wall components, mesophyll cell ultrastructure and the expression of genes related to chlorophyll degradation were measured. The results showed that exogenous BRs reduced the tip-burn incidence rate and disease index of mini Chinese cabbage, and the tip-burn incidence rate reached the highest on the ninth day after treatment. Exogenous BRs increased the contents of cellulose, hemifiber, water-soluble pectin in Ca2+ deficiency treated leaves, maintaining the stability of cell wall structure. In addition, BRs increased photosynthetic rate by increasing the activities of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and fructose 1,6-bisphosphatase (FBPase) related to Calvin cycle, maintaining relatively complete chloroplast structure and higher chlorophyll content via down-regulating the expression of BrPPH1 and BrPAO1 genes related to chlorophyll degradation. In conclusion, exogenous BRs alleviated calcium deficiency-induced tip-burn by maintaining cell wall structural stability and higher photosynthesis

    Gobi agriculture: an innovative farming system that increases energy and water use efficiencies. A review

    Get PDF
    International audienceAbstractIn populated regions/countries with fast economic development, such as Africa, China, and India, arable land is rapidly shrinking due to urban construction and other industrial uses for the land. This creates unprecedented challenges to produce enough food to satisfy the increased food demands. Can the millions of desert-like, non-arable hectares be developed for food production? Can the abundantly available solar energy be used for crop production in controlled environments, such as solar-based greenhouses? Here, we review an innovative cultivation system, namely “Gobi agriculture.” We find that the innovative Gobi agriculture system has six unique characteristics: (i) it uses desert-like land resources with solar energy as the only energy source to produce fresh fruit and vegetables year-round, unlike conventional greenhouse production where the energy need is satisfied via burning fossil fuels or electrical consumption; (ii) clusters of individual cultivation units are made using locally available materials such as clay soil for the north walls of the facilities; (iii) land productivity (fresh produce per unit land per year) is 10–27 times higher and crop water use efficiency 20–35 times greater than traditional open-field, irrigated cultivation systems; (iv) crop nutrients are provided mainly via locally-made organic substrates, which reduce synthetic inorganic fertilizer use in crop production; (v) products have a lower environmental footprint than open-field cultivation due to solar energy as the only energy source and high crop yields per unit of input; and (vi) it creates rural employment, which improves the stability of rural communities. While this system has been described as a “Gobi-land miracle” for socioeconomic development, many challenges need to be addressed, such as water constraints, product safety, and ecological implications. We suggest that relevant policies are developed to ensure that the system boosts food production and enhances rural socioeconomics while protecting the fragile ecological environment

    Linkage Mapping of Stem Saccharification Digestibility in Rice

    Get PDF
    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties

    Career calling and safety behavior among nurses: a cross-sectional study based on latent profile analysis

    Get PDF
    ObjectiveThis study aimed to clarify the subgroups of career calling among Chinese nurses, explore the factors correlated with the subgroups, and investigate the relationship between nurse safety behavior and different profiles of career calling.MethodsA cross-sectional study of 2,567 nurses from 25 hospitals in China was conducted from February to September 2023. A latent profile model of nurses’ career calling was analyzed using Mplus 7.4. The influencing factors of each profile were analyzed by multinomial logistic regression analysis. The hierarchical regression analysis was used to examine the relationship between nurse safety behavior and different profiles of career calling. The STROBE guidelines were followed in this research.ResultsThree distinct latent profiles were identified: “low-calling” type (12.4%), “medium-calling” type (54.4%), and “high-calling” type (33.2%) groups, respectively. Gender and number of night shifts per month were identified as factors influencing the latent profiles of nurses’ career calling. The different categories of career calling significantly predicted the nurse safety behavior (ΔR2 = 0.307, p < 0.001).ConclusionThis study suggests that nurses experience different types of career calling. The different categories of career calling are significantly associated with the nurse safety behavior. Consequently, administrators should pay attention to the differences in individual career calling and develop targeted intervention strategies to facilitate nurses’ career calling based on the influences of the different underlying profiles and develop enhancement strategies to strengthen nurses’ safety behaviors to ensure patient safety

    Caulobacter and Novosphingobium in tumor tissues are associated with colorectal cancer outcomes

    Get PDF
    Diversity and composition of the gut microbiome are associated with cancer patient outcomes including colorectal cancer (CRC). A growing number of evidence indicates that Fusobacterium nucleatum (Fn) in CRC tissue is associated with worse survival. However, few studies have further analyzed the differences in bacteria in tumor tissues of different patients depending on the survival time of CRC patients. Therefore, there is a need to further explore the bacterial differences in tumor tissues of patients with different prognoses and to identify key bacteria for analysis. Here, we sought to compare the differences in tumor microbiome between patients with long-term survival (LS) longer than 3 years or 4 and 5 years and patients with short-term survival (SS) in the present study cohort. We found that there were significant differences in tumor microbiome between the LS and SS and two bacteria—Caulobacter and Novosphingobium—that are present in all of the three groups. Furthermore, by analyzing bacteria in different clinical features, we also found that lower levels of microbiome (Caulobacter and Novosphingobium) have long-term survival and modulating microbiome in tumor tissue may provide an alternative way to predict the prognosis of CRC patients

    MicroRNA-101 is a potential prognostic indicator of laryngeal squamous cell carcinoma and modulates CDK8

    Full text link
    BACKGROUND: Various microRNAs (miRNAs) negatively modulate genes that are involved in cellular proliferation, differentiation, invasion, and apoptosis. In many types of cancer, the expression profiles of these miRNAs are altered. Recently, miR-101 was identified as a tumour suppressor and was found to be expressed at low levels in various types of tumours, including prostate, breast, endometrium, and bladder cancers. However, the function(s) of miR-101 in laryngeal carcinoma remain unknown. METHODS: The expression levels of miR-101 in laryngeal squamous cell carcinoma (LSCC) tissues and cells were detected by qPCR. Cell proliferation, migration, cell cycle, and apoptosis assay were applied to assess the function(s) of miR-101 in vitro. Nude mice subcutaneous tumour model was used to perform in vivo study. Moreover, we identified Cyclin-dependent kinase 8 (CDK8) as the target of miR-101 by a luciferase assay. The possible downstream effectors of CDK8 were investigated in Wnt/β-catenin signaling pathway. Changes of CDK8, β-catenin, and cyclin D1 protein levels were analyzed by western blotting and immunohistochemical staining. The prognostic effect of miR-101 was evaluated using the Kaplan–Meier method. RESULTS: Expression of miR-101 was down-regulated in the LSCC tissues compared with the adjacent normal tissues. Furthermore, downregulation of miR-101 correlated with T3–4 tumour grade, lymph node metastasis, and an advanced clinical stage in the LSCC patients examined (P < 0.05). The low level of miR-101 expression was associated with poor prognosis (P < 0.05). CDK8 was identified as the target gene of miR-101 by luciferase reporter assay. Moreover, we showed that up-regulation of miR-101 expression suppressed humen LSCC Hep-2 cells proliferation and migration, and induced cell-cycle arrest. Increased expression of miR-101 induced cells apoptosis both in vitro and in vivo. Correspondingly, exogenous expression of miR-101 significantly reduced the growth of tumour in a LSCC xenograft model. Furthermore, the miR-101 level was inversely correlated with levels of CDK8, β-catenin, and cyclin D1 in western blotting assay and immunohistochemical staining assay. CONCLUSIONS: These results indicate that miR-101 is a potent tumour repressor that directly represses CDK8 expression. Thus, detection and targeting of miR-101 may represent a novel diagnostic and therapeutic strategy for LSCC patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0626-6) contains supplementary material, which is available to authorized users
    corecore